Analysis of intracytoplasmic hyaline bodies in a hepatocellular carcinoma. Demonstration of p62 as major constituent.
Intracytoplasmic hyaline bodies (IHBs) resemble inclusions in hepatocellular carcinoma cells, which so far have escaped further characterization. A relationship to Mallory bodies was suggested on the basis of light microscopy and filamentous ultrastructure. A hepatocellular carcinoma containing numerous IHBs was studied. Our studies revealed immunoreactivity of IHBs with the monoclonal antibodies SMI 31 and MPM-2, which recognize hyperphosphorylated epitopes present on paired helical filaments in Alzheimer's disease brains (SMI 31) or on diverse proteins hyperphosphorylated by mitotic kinases in the M-phase of the cell cycle (MPM-2). One- and two-dimensional gel electrophoresis of tumor extracts followed by immunoblotting with SMI 31 and MPM-2 antibodies revealed a major immunoreactive protein with an apparent molecular weight between 62 and 65 kd, which was resolved into several highly acidic (pH 4.5) protein components in two-dimensional gels. This protein was undetectable in non-neoplastic liver tissue. Sequence analysis identified the SMI 31 and MPM-2 immunoreactive material as p62, indicating that p62 is a major constituent of IHBs. p62 is an only recently discovered protein that is a phosphotyrosine-independent ligand of the SH2 domain of p56(lck), a member of the c-src family of cytoplasmic kinases. Moreover, p62 binds ubiquitin and may act as an adapter linking ubiquitinated species to other proteins. These features suggest a role of p62 in signal transduction and possibly also carcinogenesis. IHBs observed in the hepatocellular carcinoma cells presented are the first indications of a role of p62 in disease.[1]References
- Analysis of intracytoplasmic hyaline bodies in a hepatocellular carcinoma. Demonstration of p62 as major constituent. Stumptner, C., Heid, H., Fuchsbichler, A., Hauser, H., Mischinger, H.J., Zatloukal, K., Denk, H. Am. J. Pathol. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg