The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Regulation of estrogen activity by sulfation in human Ishikawa endometrial adenocarcinoma cells.

Sulfation is an important conjugation reaction in the metabolism of steroids. Steroids sulfates do not interact with the appropriate hormone receptors; additionally, the presence of the charged sulfate moiety increases the aqueous solubility and excretion of most steroids. Estrogen sulfotransferase ( EST) is the major form of human cytosolic ST involved in the conjugation of estrogens. EST is important in the inactivation of beta-estradiol (E2) during the luteal phase of the menstrual cycle. EST has a significantly higher affinity for the sulfation of E2 and 17alpha-ethinylestradiol (EE2) than for other potent estrogens such as diethylstilbestrol (DES) and equine estrogens. The ability of EST to sulfate these estrogenic compounds at physiologic concentrations is important in regulating their activation of the ER in estrogen responsive cells. Human Ishikawa endometrial adenocarcinoma (ISH) cells possess an estrogen receptor (ER)-regulated alkaline phosphatase (AlkPhos) which is used to assay ER activation. To study the effects of EST activity on the ER activation of different estrogenic compounds, ISH cells were stably transformed with an EST expression vector. Dose-response curves for the induction of AlkPhos activity by the different estrogenic compounds were generated with EST/ISH and control pcDNA/ISH cells. EST/ISH cells were 200-fold less sensitive to E2 and EE2 than were control cells. No differences were observed in the dose response curves for DES between EST/ISH and pcDNA/ISH cells. EST/ISH cells were approximately 3-10-fold less sensitive to the equine estrogens equilin and 17-equilin as compared to control cells. The ability of EST to decrease the ER activation of an estrogen correlates with the sulfation of these compounds at nanomolar concentrations by EST/ISH and pcDNA/ISH ISH cells. These results indicate that EST is capable of efficiently inactivating E2 and EE2 but is significantly less effective in inhibiting the ER binding of other potent estrogenic compounds.[1]


  1. Regulation of estrogen activity by sulfation in human Ishikawa endometrial adenocarcinoma cells. Kotov, A., Falany, J.L., Wang, J., Falany, C.N. J. Steroid Biochem. Mol. Biol. (1999) [Pubmed]
WikiGenes - Universities