The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Arg304 of human DNA primase is a key contributor to catalysis and NTP binding: primase and the family X polymerases share significant sequence homology.

Comparison of the amino acid sequences of eucaryotic DNA primase and the family X polymerases indicates that primase shares significant sequence homology with this family. With the use of DNA polymerase beta (pol beta) as a paradigm for family X polymerases, these homologies include both the catalytic core domain/subunit of each enzyme (31 kDa domain of pol beta and p49 subunit of primase) as well as the accessory domain/subunit (8 kDa domain of pol beta and p58 subunit of primase). To further explore these homologies as well as provide insights into the mechanism of primase, we generated three mutants (R304K, R304Q, and R304A) of the p49 subunit at an arginine that is highly conserved between primase and the eukaryotic family X polymerases. These mutations significantly decreased the rate of primer synthesis, due primarily to a decreased rate of initiation, and the extent of impairment correlated with the severity of the mutation (A > Q > K). R304 also contributes to efficient utilization of the NTP that will become the 5'-terminus of the new primer, and these effects are at least partially mediated through interactions with the phosphates of this NTP. The implications of these results with respect to the structure and biological role of primase, as well as its relationship to the family X polymerases, are discussed.[1]

References

 
WikiGenes - Universities