The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Thorax closure in Drosophila: involvement of Fos and the JNK pathway.

Dorsal closure, a morphogenetic movement during Drosophila embryogenesis, is controlled by the Drosophila JNK pathway, D-Fos and the phosphatase Puckered (Puc). To identify principles of epithelial closure processes, we studied another cell sheet movement that we term thorax closure, the joining of the parts of the wing imaginal discs which give rise to the adult thorax during metamorphosis. In thorax closure a special row of margin cells express puc and accumulate prominent actin fibres during midline attachment. Genetic data indicate a requirement of D-Fos and the JNK pathway for thorax closure, and a negative regulatory role of Puc. Furthermore, puc expression co-localises with elevated levels of D-Fos, is reduced in a JNK or D-Fos loss-of- function background and is ectopically induced after JNK activation. This suggests that Puc acts downstream of the JNK pathway and D-Fos to mediate a negative feed-back loop. Therefore, the molecular circuitry required for thorax closure is very similar to the one directing dorsal closure in the embryo, even though the tissues are not related. This finding supports the hypothesis that the mechanism controlling dorsal closure has been co-opted for thorax closure in the evolution of insect metamorphosis and may represent a more widely used functional module for tissue closure in other species as well.[1]


  1. Thorax closure in Drosophila: involvement of Fos and the JNK pathway. Zeitlinger, J., Bohmann, D. Development (1999) [Pubmed]
WikiGenes - Universities