The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Synthesis, evaluation, and comparative molecular field analysis of 1-phenyl-3-amino-1,2,3,4-tetrahydronaphthalenes as ligands for histamine H(1) receptors.

A series of 1-phenyl-3-amino-1,2,3,4-tetrahydronaphthalenes (1-phenyl-3-aminotetralins, PATs) previously was found to modulate tyrosine hydroxylase activity and dopamine synthesis in rodent forebrain through interaction with a binding site labeled by [(3)H]-(-)-(1R,3S)-trans-H(2)-PAT. Recently, we have discovered that PATs also bind with high affinity to the [(3)H]mepyramine-labeled H(1) receptor in rat and guinea pig brain. Here, we report the synthesis and biological evaluation of additional PAT analogues in order to identify differences in binding at these two sites. Further molecular modifications involve the pendant phenyl ring as well as quaternary amine compounds. Comparison of about 38 PAT analogues, 10 structurally diverse H(1) ligands, and several other CNS-active compounds revealed no significant differences in affinity at [(3)H]-(-)-trans-H(2)-PAT sites versus [(3)H]mepyramine-labeled H(1) receptors. These results, together with previous autoradiographic brain receptor-mapping studies that indicate similar distribution of [(3)H]-(-)-trans-H(2)-PAT sites and [(3)H]mepyramine-labeled H(1) receptors, suggest that both radioligands label the same histamine H(1) receptors in rodent brain. We also report a revision of our previous comparative molecular field analysis (CoMFA) study of the PAT ligands that yields a highly predictive model for 66 compounds with a cross-validated R(2) (q(2)) value of 0.67. This model will be useful for the prediction of high-affinity ligands at radiolabeled H(1) receptors in mammalian brain.[1]

References

 
WikiGenes - Universities