The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Early training may exacerbate brain damage after focal brain ischemia in the rat.

Early overuse of a lesioned forelimb, induced by immediate immobilization of the intact forelimb after a cortical lesion, has been reported to increase tissue damage and delay functional recovery. To investigate if early training without immobilization of the intact forelimb could increase tissue loss and reduce recovery, the middle cerebral artery was ligated distal to the striatal branches in 25 male spontaneously hypertensive rats. Control rats were housed in standard cages, training rats were transferred to larger cages allowing various activities and received additional special training 1 hour a day starting either 24 hours or 7 days after the ligation. The rats were tested on a rotating pole, in a leg placement test, and in a water maze and they were killed 6 weeks after the ligation. Delayed training resulted in the best overall performance; however, both training groups performed better than standard rats on the rotating pole. The cortical infarct volume was larger in the early training group than in the other two groups (P < .005), possibly related to increased glutamate release and peri-infarct cortical hyperexcitability.[1]

References

  1. Early training may exacerbate brain damage after focal brain ischemia in the rat. Risedal, A., Zeng, J., Johansson, B.B. J. Cereb. Blood Flow Metab. (1999) [Pubmed]
 
WikiGenes - Universities