The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Pathways of assimilative sulfur metabolism in Pseudomonas putida.

Cysteine and methionine biosynthesis was studied in Pseudomonas putida S-313 and Pseudomonas aeruginosa PAO1. Both these organisms used direct sulfhydrylation of O-succinylhomoserine for the synthesis of methionine but also contained substantial levels of O-acetylserine sulfhydrylase (cysteine synthase) activity. The enzymes of the transsulfuration pathway (cystathionine gamma-synthase and cystathionine beta-lyase) were expressed at low levels in both pseudomonads but were strongly upregulated during growth with cysteine as the sole sulfur source. In P. aeruginosa, the reverse transsulfuration pathway between homocysteine and cysteine, with cystathionine as the intermediate, allows P. aeruginosa to grow rapidly with methionine as the sole sulfur source. P. putida S-313 also grew well with methionine as the sulfur source, but no cystathionine gamma-lyase, the key enzyme of the reverse transsulfuration pathway, was found in this species. In the absence of the reverse transsulfuration pathway, P. putida desulfurized methionine by the conversion of methionine to methanethiol, catalyzed by methionine gamma-lyase, which was upregulated under these conditions. A transposon mutant of P. putida that was defective in the alkanesulfonatase locus (ssuD) was unable to grow with either methanesulfonate or methionine as the sulfur source. We therefore propose that in P. putida methionine is converted to methanethiol and then oxidized to methanesulfonate. The sulfonate is then desulfonated by alkanesulfonatase to release sulfite for reassimilation into cysteine.[1]

References

  1. Pathways of assimilative sulfur metabolism in Pseudomonas putida. Vermeij, P., Kertesz, M.A. J. Bacteriol. (1999) [Pubmed]
 
WikiGenes - Universities