Myosin regulation of NKCC1: effects on cAMP-mediated Cl- secretion in intestinal epithelia.
The basally located actin cytoskeleton has been demonstrated previously to regulate Cl- secretion from intestinal epithelia via its effects on the Na+-K+-2Cl- cotransporter (NKCC1). In nontransporting epithelia, inhibition of myosin light chain kinase (MLCK) prevents cell-shrinkage- induced activation of NKCC1. The aim of this study was to investigate the role of myosin in the regulation of secretagogue-stimulated Cl- secretion in intestinal epithelia. The human intestinal epithelial cell line T84 was used for these studies. Prevention of myosin light chain phosphorylation with the MLCK inhibitor ML-9 or ML-7 and inhibition of myosin ATPase with butanedione monoxime (BDM) attenuated cAMP but not Ca2+-mediated Cl- secretion. Both ML-9 and BDM diminished cAMP activation of NKCC1. Neither apical Cl- channel activity, basolateral K+ channel activity, nor Na+-K+-ATPase were affected by these agents. Cytochalasin D prevented such attenuation. cAMP-induced rearrangement of basal actin microfilaments was prevented by both ML-9 and BDM. The phosphorylation of mosin light chain and subsequent contraction of basal actin-myosin bundles are crucial to the cAMP-driven activation of NKCC1 and subsequent apical Cl- efflux.[1]References
- Myosin regulation of NKCC1: effects on cAMP-mediated Cl- secretion in intestinal epithelia. Hecht, G., Koutsouris, A. Am. J. Physiol. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg