The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid.

Lysophosphatidic acid (LPA), together with sphingosine 1-phosphate, is a bioactive lipid mediator that acts on G-protein-coupled receptors to evoke multiple cellular responses, including Ca(2+) mobilization, modulation of adenylyl cyclase, and mitogen-activated protein (MAP) kinase activation. In this study, we isolated a human cDNA encoding a novel G-protein-coupled receptor, designated EDG7, and characterized it as a cellular receptor for LPA. The amino acid sequence of the EDG7 protein is 53.7 and 48.8% identical to those of the human functional LPA receptors EDG2 and EDG4, respectively, previously identified. LPA (oleoyl) but not other lysophospholipids induced an increase in the [Ca(2+)](i) of EDG7-overexpressing Sf9 cells. Other LPA receptors, EDG4 but not EDG2, transduced the Ca(2+) response by LPA when expressed in Sf9 cells. LPAs with an unsaturated fatty acid but not with a saturated fatty acid induced an increase in the [Ca(2+)](i) of EDG7-expressing Sf9 cells, whereas LPAs with both saturated and unsaturated fatty acids elicited a Ca(2+) response in Sf9 cells expressing EDG4. In EDG7- or EDG4-expressing Sf9 cells, LPA stimulated forskolin-induced increase in intracellular cAMP levels, which was not observed in EDG2-expressing cells. In PC12 cells, EDG4 but not EDG2 or EDG7 mediated the activation of MAP kinase by LPA. Neither the EDG7- nor EDG4-transduced Ca(2+) response or cAMP accumulation was inhibited by pertussis toxin. In conclusion, the present study demonstrates that EDG7, a new member of the EDG family of G-protein-coupled receptors, is a specific LPA receptor that shows distinct properties from known cloned LPA receptors in ligand specificities, Ca(2+) response, modulation of adenylyl cyclase, and MAP kinase activation.[1]

References

  1. Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. Bandoh, K., Aoki, J., Hosono, H., Kobayashi, S., Kobayashi, T., Murakami-Murofushi, K., Tsujimoto, M., Arai, H., Inoue, K. J. Biol. Chem. (1999) [Pubmed]
 
WikiGenes - Universities