The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Conversion of mammalian 3alpha-hydroxysteroid dehydrogenase to 20alpha-hydroxysteroid dehydrogenase using loop chimeras: changing specificity from androgens to progestins.

Hydroxysteroid dehydrogenases (HSDs) regulate the occupancy and activation of steroid hormone receptors by converting potent steroid hormones into their cognate inactive metabolites. 3alpha-HSD catalyzes the inactivation of androgens in the prostate by converting 5alpha-dihydrotestosterone to 3alpha-androstanediol, where excess 5alpha-dihydrotestosterone is implicated in prostate disease. By contrast, 20alpha-HSD catalyzes the inactivation of progestins in the ovary and placenta by converting progesterone to 20alpha-hydroxyprogesterone, where progesterone is essential for maintaining pregnancy. Mammalian 3alpha-HSDs and 20alpha-HSDs belong to the aldo-keto reductase superfamily and share 67% amino acid sequence identity yet show positional and stereospecificity for the formation of secondary alcohols on opposite ends of steroid hormone substrates. The crystal structure of 3alpha-HSD indicates that the mature steroid binding pocket consists of 10 residues located on five loops, including loop A and the mobile loops B and C. 3alpha-HSD was converted to 20alpha-HSD by replacing these loops with those found in 20alpha-HSD. However, when pocket residues in 3alpha-HSD were mutated to those found in 20alpha-HSD altered specificity was not achieved. Replacement of loop A created a 17beta-HSD activity that was absent in either 3alpha- or 20alpha-HSD. Once loops A and C were replaced, the chimera had both 3alpha- and 20alpha-HSD activity. When loops A, B, and C were substituted, 3alpha-HSD was converted to a stereospecific 20alpha-HSD with a resultant shift in k(cat)/K(m) for the desired reaction of 2 x 10(11). This study represents an example where sex hormone specificity can be changed at the enzyme level.[1]


WikiGenes - Universities