The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Cartilage protection by nitric oxide synthase inhibitors after intraarticular injection of interleukin-1beta in rats.

OBJECTIVE: To evaluate the effect of nitric oxide synthase ( NOS) inhibitors on proteoglycan synthesis following intraarticular administration of interleukin-1beta (IL-1beta) in rats. METHODS: Recombinant human IL-1beta and NOS inhibitors with different selectivity for inducible NOS (N-monomethyl-L-arginine [L-NMA], N-iminoethyl-L-ornithine [L-NIO], and S-methylisothiourea [SMT]) were simultaneously administered in rats by a single intraarticular injection in each knee. L-NMA was also infused for 72 hours using an Alzet mini osmotic pump implanted into the peritoneal cavity 24 hours before IL-1beta challenge. NO production was determined as nitrate and nitrite, either in synovial fluid or ex vivo in supernatants of synovium and patellae. Proteoglycan synthesis was measured by ex vivo incorporation of 35SO4(2-) into patellar cartilage. RESULTS: IL-1beta induced a time-dependent increase in NO production in synovial fluid. Synovium and patellae released large amounts of nitrate and nitrite under ex vivo conditions, indicating that both tissues are effective sources of NO within the joint. This production of NO was accompanied by a delayed inhibition of proteoglycan synthesis. The intraarticular administration of L-NMA and L-NIO reduced NO release in synovial fluid and resulted in a partial recovery of proteoglycan synthesis. Under our experimental conditions, SMT failed to reduce NO synthesis and to restore proteoglycan synthesis. The protection of cartilage was improved by the systemic and sustained delivery of L-NMA. However, the complete inhibition of NO production in synovial fluid was not sufficient to fully restore cartilage anabolism. CONCLUSION: Our findings show that in rats: 1) NO may be an early mediator of the effect of IL-1beta on cartilage, 2) NO inhibition may have therapeutic relevance, although it is not sufficient to fully reverse the deleterious effects of IL-1beta, 3) among NOS inhibitors tested, only amino acid derivatives are effective, 4) protection can be achieved by local administration of NOS inhibitors, and 5) systemic and sustained delivery of the NOS inhibitor with the highest efficacy after intraarticular injection provides the most benefit.[1]


  1. Cartilage protection by nitric oxide synthase inhibitors after intraarticular injection of interleukin-1beta in rats. Presle, N., Cipolletta, C., Jouzeau, J.Y., Abid, A., Netter, P., Terlain, B. Arthritis Rheum. (1999) [Pubmed]
WikiGenes - Universities