The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Does a higher concentration of gadolinium chelates improve first-pass cardiac signal changes?

The purpose of this study was to evaluate first-pass cardiac signal changes with a higher concentrated gadolinium-chelate (gadobutrol) and its influence on bolus geometry. Phantom studies and in vivo first-pass cardiac studies were performed in rabbits (n = 8 experiments) under general anesthesia at 1.0 T using an ultrafast T1-weighted Turbo-fast low-angle shot (FLASH) sequence (TR/TE 4.7/1. 6 msec, alpha = 90 degrees ) with a time resolution of 870 msec. Gadobutrol was injected as an intravenous bolus at two concentrations (0.5 and 1.0 mol Gd/L) and five doses (0.3, 0.15, 0.1, 0.055, and 0.03 mmol Gd/kg bw). The blood-pool gadolinium compound gadopentetate dimeglumine-polylysine (0.15, 0.075, 0.05, and 0.015 mmol Gd/kg bw, 0.5 mol Gd/L) and the standard extracellular gadopentetate dimeglumine (0.1 and 0.05 mmol Gd/kg bw, 0.5 mol Gd/L) served as reference agents. Cardiac signal changes were calculated from serial signal intensity measurements. Maximum signal intensity changes and best peak profiles during first pass of the right and left ventricle were observed with a dose of 0.03 mmol Gd/kg bw gadobutrol using T1-weighted Turbo-FLASH. At the low application volumes used, the higher concentration of 1.0 mol Gd/L gadobutrol did not increase the degree of signal intensity changes or sharpen the bolus profile. First-pass cardiac signal changes using T1-weighted Turbo-FLASH with the new extracellular contrast agent gadobutrol are best observed at a dose of 0.03 mmol Gd/kg bw. There is no advantage to the concentrated formulation (1 mol Gd/L gadobutrol) when using small injection volumes. J. Magn. Reson. Imaging 1999;10:806-812.[1]

References

  1. Does a higher concentration of gadolinium chelates improve first-pass cardiac signal changes? Tombach, B., Reimer, P., Prümer, B., Allkemper, T., Bremer, C., Mühler, A., Heindel, W. Journal of magnetic resonance imaging : JMRI. (1999) [Pubmed]
 
WikiGenes - Universities