The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Absence or pharmacological blocking of placental P-glycoprotein profoundly increases fetal drug exposure.

It was recently shown that naturally occurring Mdr1a mutant fetuses of the CF-1 outbred mouse stock have no placental Mdr1a P-glycoprotein ( P-gp) and that this absence is associated with increased sensitivity to avermectin, a teratogenic pesticide. To further define the role of placental drug-transporting P-gp in toxicological protection of the fetus, we used mice with a targeted disruption of the Mdr1a and Mdr1b genes. Mdr1a(+/-)/1b(+/-) females were mated with Mdr1a(+/-)/1b(+/-) males to obtain fetuses of 3 genotypes (Mdr1a(+/+)/1b(+/+), Mdr1a(+/-)/1b(+/-), and Mdr 1a(-/-)/1b(-/-)) in a single mother. Intravenous administration of the P-gp substrate drugs [(3)H]digoxin, [(14)C]saquinavir, or paclitaxel to pregnant dams revealed that 2.4-, 7-, or 16-fold more drug, respectively, entered the Mdr1a(-/-)/1b(-/-) fetuses than entered wild-type fetuses. Furthermore, placental P-gp activity could be completely inhibited by oral administration of the P-gp blockers PSC833 or GG918 to heterozygous mothers. Our findings imply that the placental drug-transporting P-gp is of great importance in limiting the fetal penetration of various potentially harmful or therapeutic compounds and demonstrate that this P-gp function can be abolished by pharmacological means. The latter principle could be applied clinically to improve pharmacotherapy of the unborn child.[1]

References

  1. Absence or pharmacological blocking of placental P-glycoprotein profoundly increases fetal drug exposure. Smit, J.W., Huisman, M.T., van Tellingen, O., Wiltshire, H.R., Schinkel, A.H. J. Clin. Invest. (1999) [Pubmed]
 
WikiGenes - Universities