Lateral signaling mediated by axon contact and calcium entry regulates asymmetric odorant receptor expression in C. elegans.
C. elegans detects several odorants with the bilaterally symmetric pair of AWC olfactory neurons. A stochastic, coordinated decision ensures that the candidate odorant receptor gene str-2 is expressed in only one AWC neuron in each animal--either the left or the right neuron, but never both. An interaction between the two AWC neurons generates asymmetric str-2 expression in a process that requires normal axon guidance and probably AWC axon contact. This interaction induces str-2 expression by reducing calcium signaling through a voltage-dependent Ca2+ channel and the CaM kinase II UNC-43. CaMKII activity acts as a switch in the initial decision to express str-2; thus, calcium signals can define distinct cell types during neuronal development. A cGMP signaling pathway that is used in olfaction maintains str-2 expression after the initial decision has been made.[1]References
- Lateral signaling mediated by axon contact and calcium entry regulates asymmetric odorant receptor expression in C. elegans. Troemel, E.R., Sagasti, A., Bargmann, C.I. Cell (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg