The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

A multifunctional ATP-binding cassette transporter system from Vibrio cholerae transports vibriobactin and enterobactin.

Vibrio cholerae uses the catechol siderophore vibriobactin for iron transport under iron-limiting conditions. We have identified genes for vibriobactin transport and mapped them within the vibriobactin biosynthetic gene cluster. Within this genetic region we have identified four genes, viuP, viuD, viuG and viuC, whose protein products have homology to the periplasmic binding protein, the two integral cytoplasmic membrane proteins, and the ATPase component, respectively, of other iron transport systems. The amino-terminal region of ViuP has homology to a lipoprotein signal sequence, and ViuP could be labeled with [(3)H]palmitic acid. This suggests that ViuP is a membrane lipoprotein. The ViuPDGC system transports both vibriobactin and enterobactin in Escherichia coli. In the same assay, the E. coli enterobactin transport system, FepBDGC, allowed the utilization of enterobactin but not vibriobactin. Although the entire viuPDGC system could complement mutations in fepB, fepD, fepG, or fepC, only viuC was able to independently complement the corresponding fep mutation. This indicates that these proteins usually function as a complex. V. cholerae strains carrying a mutation in viuP or in viuG were constructed by marker exchange. These mutations reduced, but did not completely eliminate, vibriobactin utilization. This suggests that V. cholerae contains genes in addition to viuPDGC that function in the transport of catechol siderophores.[1]

References

 
WikiGenes - Universities