The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

pilQ  -  ATPase

Escherichia coli

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of pilQ

  • Characterization of pilQ, a new gene required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa [1].
  • The product of the pilQ gene is essential for the biogenesis of type IV pili in Neisseria gonorrhoeae [2].
  • The piliation defects in the mutants could not be ascribed to polarity on distal pilQ expression as shown by direct measurement of PilQ antigen in those backgrounds and the use of a novel technique to create tandem duplications in the gonococcus (Gc) genome [3].
  • We report here the crystal structures of a 40 kDa ATPase fragment of E. coli MutL (LN40) complexed with a substrate analog, ADPnP, and with product ADP [4].
  • The hexameric ATPase P4 of dsRNA bacteriophage phi12, located at the vertices of the icosahedral capsid, is such a packaging motor [5].
 

High impact information on pilQ

  • This activity is termed "translocation ATPase". Liposomes alone can also stimulate SecA ATPase, but membrane proteins block this stimulation in native inner membranes [6].
  • The ATPase activity of SecA is stimulated by E. coli plasma membrane vesicles bearing SecY protein and a precursor protein such as proOmpA [6].
  • We have previously reconstituted the soluble phase of precursor protein translocation in vitro using purified proteins (the precursor proOmpA, the chaperone SecB, and the ATPase SecA) in addition to isolated inner membrane vesicles [7].
  • Full SecA/lipid ATPase activity and stability are also seen when a mixture of a leader peptide and either OmpA or maltose binding protein (MBP) are added instead of proOmpA, while neither the leader peptide alone nor OmpA or MBP suffice [6].
  • The packaging enzyme and the mature capsid protein (gp23*) both appear to arise from processing of gp23, the former as a minor product of a specific gp23 structure in the prohead, acting in DNA packaging as a DNA-dependent ATPase, and a headful-dependent terminase [8].
 

Chemical compound and disease context of pilQ

 

Biological context of pilQ

  • Plasmid R64 pilQ gene is essential for the formation of thin pilus, a type IV pilus [14].
  • Deletion mutants of pilM and pilQ displayed a dominant negative phenotype when transformed into wild-type cells, suggesting that these genes encode proteins involved in multimeric structures [15].
  • DNA sequencing of the region upstream of pilQ revealed the presence of two open reading frames (ORFs) whose deduced polypeptides shared significant identities with proteins required for pilus expression in Pseudomonas aeruginosa and Pseudomonas syringae, the genes for which are arrayed upstream of a gene encoding a PilQ homologue [3].
  • The pilQ gene was mapped to Spel fragment 2, which is located at 0-5 minutes on the P. aeruginosa PAO1 chromosome, and thus it is not closely linked to the previously characterized pilA-D, pilS,R or pilT genes [1].
  • The peptide vsv-C (amino-acid sequence KLIGVLSSLFRPK) stimulates the ATPase of BiP and Hsc70 (ref. 3) and the intrinsic ATPase of DnaK [16].
 

Anatomical context of pilQ

  • We find that removal of light chains from myosin reduces the velocity of actin filaments from 8.8 microns s-1 to 0.8 microns s-1 without significantly decreasing the ATPase activity [17].
  • Intracellular targeting and import of an F1-ATPase beta-subunit-beta-galactosidase hybrid protein into yeast mitochondria [18].
  • An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins [19].
  • These results indicate that the vacuolar proton-translocating ATPase complex is essential for vacuolar acidification and that the low-pH state of the vacuole is crucial for normal growth [20].
  • Sera from patients with primary biliary cirrhosis reacted with four major bands in beef heart mitochondria and ATPase extract when analyzed by immunoblot after sodium dodecyl sulfate-polyacrylamide gel electrophoresis [21].
 

Associations of pilQ with chemical compounds

  • After a single cycle of ATP hydrolysis by the adenosine triphosphatase (ATPase) activity of GroEL, the bi-toroidal GroEL formed a stable asymmetric ternary complex with GroES and nucleotide (bulletlike structures) [22].
  • The ATPase activity bound to either of these single subunits, or in pairwise combinations, was not inhibited by N,N'-dicyclohexylcarbodiimide [23].
  • These two elements are involved in adenine recognition and in ATPase activity of DEAD-box proteins [24].
  • 8-azido-ATP inactivates SecA for proOmpA translocation and for translocation ATPase, yet does not inhibit a low level of ATP hydrolysis inherent in the isolated SecA protein [25].
  • Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis [26].
 

Other interactions of pilQ

 

Analytical, diagnostic and therapeutic context of pilQ

References

  1. Characterization of pilQ, a new gene required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Martin, P.R., Hobbs, M., Free, P.D., Jeske, Y., Mattick, J.S. Mol. Microbiol. (1993) [Pubmed]
  2. The product of the pilQ gene is essential for the biogenesis of type IV pili in Neisseria gonorrhoeae. Drake, S.L., Koomey, M. Mol. Microbiol. (1995) [Pubmed]
  3. PilP, a pilus biogenesis lipoprotein in Neisseria gonorrhoeae, affects expression of PilQ as a high-molecular-mass multimer. Drake, S.L., Sandstedt, S.A., Koomey, M. Mol. Microbiol. (1997) [Pubmed]
  4. Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Ban, C., Junop, M., Yang, W. Cell (1999) [Pubmed]
  5. Atomic snapshots of an RNA packaging motor reveal conformational changes linking ATP hydrolysis to RNA translocation. Mancini, E.J., Kainov, D.E., Grimes, J.M., Tuma, R., Bamford, D.H., Stuart, D.I. Cell (2004) [Pubmed]
  6. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Lill, R., Dowhan, W., Wickner, W. Cell (1990) [Pubmed]
  7. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Brundage, L., Hendrick, J.P., Schiebel, E., Driessen, A.J., Wickner, W. Cell (1990) [Pubmed]
  8. Evidence that a phage T4 DNA packaging enzyme is a processed form of the major capsid gene product. Rao, V.B., Black, L.W. Cell (1985) [Pubmed]
  9. A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Chen, J., Lu, G., Lin, J., Davidson, A.L., Quiocho, F.A. Mol. Cell (2003) [Pubmed]
  10. Mode of interaction of the single a subunit with the multimeric c subunits during the translocation of the coupling ions by F1F0 ATPases. Kaim, G., Matthey, U., Dimroth, P. EMBO J. (1998) [Pubmed]
  11. The nature of inhibition of DNA gyrase by the coumarins and the cyclothialidines revealed by X-ray crystallography. Lewis, R.J., Singh, O.M., Smith, C.V., Skarzynski, T., Maxwell, A., Wonacott, A.J., Wigley, D.B. EMBO J. (1996) [Pubmed]
  12. ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. Panaretou, B., Prodromou, C., Roe, S.M., O'Brien, R., Ladbury, J.E., Piper, P.W., Pearl, L.H. EMBO J. (1998) [Pubmed]
  13. Energetics of plasmid-mediated arsenate resistance in Escherichia coli. Mobley, H.L., Rosen, B.P. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  14. Atpase activity and multimer formation of Pilq protein are required for thin pilus biogenesis in plasmid R64. Sakai, D., Horiuchi, T., Komano, T. J. Biol. Chem. (2001) [Pubmed]
  15. Characterization of a five-gene cluster required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Martin, P.R., Watson, A.A., McCaul, T.F., Mattick, J.S. Mol. Microbiol. (1995) [Pubmed]
  16. Different conformations for the same polypeptide bound to chaperones DnaK and GroEL. Landry, S.J., Jordan, R., McMacken, R., Gierasch, L.M. Nature (1992) [Pubmed]
  17. Skeletal muscle myosin light chains are essential for physiological speeds of shortening. Lowey, S., Waller, G.S., Trybus, K.M. Nature (1993) [Pubmed]
  18. Intracellular targeting and import of an F1-ATPase beta-subunit-beta-galactosidase hybrid protein into yeast mitochondria. Douglas, M.G., Geller, B.L., Emr, S.D. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  19. An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Bork, P., Sander, C., Valencia, A. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  20. Role of vacuolar acidification in protein sorting and zymogen activation: a genetic analysis of the yeast vacuolar proton-translocating ATPase. Yamashiro, C.T., Kane, P.M., Wolczyk, D.F., Preston, R.A., Stevens, T.H. Mol. Cell. Biol. (1990) [Pubmed]
  21. Mitochondrial antibodies in primary biliary cirrhosis: species and nonspecies specific determinants of M2 antigen. Lindenborn-Fotinos, J., Baum, H., Berg, P.A. Hepatology (1985) [Pubmed]
  22. Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Todd, M.J., Viitanen, P.V., Lorimer, G.H. Science (1994) [Pubmed]
  23. Membrane integration and function of the three F0 subunits of the ATP synthase of Escherichia coli K12. Friedl, P., Hoppe, J., Gunsalus, R.P., Michelsen, O., von Meyenburg, K., Schairer, H.U. EMBO J. (1983) [Pubmed]
  24. The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity. Cordin, O., Tanner, N.K., Doère, M., Linder, P., Banroques, J. EMBO J. (2004) [Pubmed]
  25. SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of Escherichia coli. Lill, R., Cunningham, K., Brundage, L.A., Ito, K., Oliver, D., Wickner, W. EMBO J. (1989) [Pubmed]
  26. Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis. Diederichs, K., Diez, J., Greller, G., Müller, C., Breed, J., Schnell, C., Vonrhein, C., Boos, W., Welte, W. EMBO J. (2000) [Pubmed]
  27. The ATPase activity of BfpD is greatly enhanced by zinc and allosteric interactions with other Bfp proteins. Crowther, L.J., Yamagata, A., Craig, L., Tainer, J.A., Donnenberg, M.S. J. Biol. Chem. (2005) [Pubmed]
  28. The functional domains of bacteriophage t4 terminase. Kanamaru, S., Kondabagil, K., Rossmann, M.G., Rao, V.B. J. Biol. Chem. (2004) [Pubmed]
  29. The DNA restriction endonuclease of Escherichia coli B. I. Studies of the DNA translocation and the ATPase activities. Endlich, B., Linn, S. J. Biol. Chem. (1985) [Pubmed]
  30. The DNA translocation and ATPase activities of restriction-deficient mutants of Eco KI. Davies, G.P., Kemp, P., Molineux, I.J., Murray, N.E. J. Mol. Biol. (1999) [Pubmed]
  31. Negative control of DNA replication by hydrolysis of ATP bound to DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli. Mizushima, T., Nishida, S., Kurokawa, K., Katayama, T., Miki, T., Sekimizu, K. EMBO J. (1997) [Pubmed]
  32. The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone. Wawrzynow, A., Wojtkowiak, D., Marszalek, J., Banecki, B., Jonsen, M., Graves, B., Georgopoulos, C., Zylicz, M. EMBO J. (1995) [Pubmed]
  33. Ligand-dependent structural variations in Escherichia coli F1 ATPase revealed by cryoelectron microscopy. Gogol, E.P., Johnston, E., Aggeler, R., Capaldi, R.A. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  34. The "DEAD box" protein DbpA interacts specifically with the peptidyltransferase center in 23S rRNA. Nicol, S.M., Fuller-Pace, F.V. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  35. Structural features of the gamma subunit of the Escherichia coli F(1) ATPase revealed by a 4.4-A resolution map obtained by x-ray crystallography. Hausrath, A.C., Grüber, G., Matthews, B.W., Capaldi, R.A. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
 
WikiGenes - Universities