The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Model of solute and water movement in the kidney.

Finite difference equations describing salt and water movement in a model of the mammalian kidney have been solved numerically by an extension of the Newton-Raphson method used for the medullary counterflow system. The method permits both steady-state and transient solutions. It has been possible to simulate behavior of the whole kidney as a function of hydrostatic pressures in renal artery, vein, and pelvis; protein and other solute concentrations in arterial blood; and phenomenological equations describing transport of solute and water across nephron and capillary walls. With the model it has been possible to compute concentrations, flows, and hydrostatic pressures in the various nephron segments and in cortical and medullary capillaries and interstitium. In a general way, calculations on the model have met intuitive expectations. In addition, they have reemphasized the critical dependence of renal function on the hydraulic and solute permeabilities of glomerular, postglomerular, and medullary capillaries. These studies provide additional support for our thesis that the functional unit of the kidney is not the single nephron, but a nephrovascular unit consisting of a group of nephrons and their tightly coupled vasculature.[1]


  1. Model of solute and water movement in the kidney. Stephenson, J.L., Mejia, R., Tewarson, R.P. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
WikiGenes - Universities