The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Water Movements

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Water Movements


High impact information on Water Movements

  • Interestingly, urea was also able to drive water movement across the AQP1-independent pathway [3].
  • Effect of cetiedil on cation and water movements in erythrocytes [4].
  • Under all experimental conditions, close linear relationships existed between net water movement and fractional absorption of glucose, xylose, and fatty acids, as well as between the absorption rates of these solutes [5].
  • Despite net water movement in the opposite direction (0.5 nl mm-1 min-1), the influx rate was significantly higher than the efflux rate of urea in both groups [6].
  • Effect of atropine on bile-oleic acid-induced alterations in dog jejunal hemodynamics, oxygenation, and net transmucosal water movement [7].

Biological context of Water Movements


Anatomical context of Water Movements


Associations of Water Movements with chemical compounds


Gene context of Water Movements


Analytical, diagnostic and therapeutic context of Water Movements


  1. Hyperosmolar mannitol simulates expression of aquaporins 4 and 9 through a p38 mitogen-activated protein kinase-dependent pathway in rat astrocytes. Arima, H., Yamamoto, N., Sobue, K., Umenishi, F., Tada, T., Katsuya, H., Asai, K. J. Biol. Chem. (2003) [Pubmed]
  2. Diffusion tensor analysis of peritumoral edema using lambda chart analysis indicative of the heterogeneity of the microstructure within edema. Morita, K., Matsuzawa, H., Fujii, Y., Tanaka, R., Kwee, I.L., Nakada, T. J. Neurosurg. (2005) [Pubmed]
  3. Requirement of aquaporin-1 for NaCl-driven water transport across descending vasa recta. Pallone, T.L., Edwards, A., Ma, T., Silldorff, E.P., Verkman, A.S. J. Clin. Invest. (2000) [Pubmed]
  4. Effect of cetiedil on cation and water movements in erythrocytes. Schmidt, W.F., Asakura, T., Schwartz, E. J. Clin. Invest. (1982) [Pubmed]
  5. Effects of dihydroxy bile acids and hydroxy fatty acids on the absorption of oleic acid in the human jejunum. Wanitschke, R., Ammon, H.V. J. Clin. Invest. (1978) [Pubmed]
  6. Urea secretion by the straight segment of the proximal tubule. Kawamura, S., Kokko, J.P. J. Clin. Invest. (1976) [Pubmed]
  7. Effect of atropine on bile-oleic acid-induced alterations in dog jejunal hemodynamics, oxygenation, and net transmucosal water movement. Kvietys, P.R., Wilborn, W.H., Granger, D.N. Gastroenterology (1981) [Pubmed]
  8. Intestinal perfusion studies in tropical sprue. 2. Movement of water and electrolytes. Hellier, M.D., Bhat, P., Albert, J., Baker, S.J. Gut (1977) [Pubmed]
  9. Hypobaric biology: Arabidopsis gene expression at low atmospheric pressure. Paul, A.L., Schuerger, A.C., Popp, M.P., Richards, J.T., Manak, M.S., Ferl, R.J. Plant Physiol. (2004) [Pubmed]
  10. Aquaporins in brain: distribution, physiology, and pathophysiology. Badaut, J., Lasbennes, F., Magistretti, P.J., Regli, L. J. Cereb. Blood Flow Metab. (2002) [Pubmed]
  11. pH-dependent structural changes in the active site of p-hydroxybenzoate hydroxylase point to the importance of proton and water movements during catalysis. Gatti, D.L., Entsch, B., Ballou, D.P., Ludwig, M.L. Biochemistry (1996) [Pubmed]
  12. Aquaporin-8 is involved in water transport in isolated superficial colonocytes from rat proximal colon. Laforenza, U., Cova, E., Gastaldi, G., Tritto, S., Grazioli, M., LaRusso, N.F., Splinter, P.L., D'Adamo, P., Tosco, M., Ventura, U. J. Nutr. (2005) [Pubmed]
  13. Influence of glucose, fructose, and water movement on calcium absorption in the jejunum. Norman, D.A., Morawski, S.G., Fordtran, J.S. Gastroenterology (1980) [Pubmed]
  14. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. Saadoun, S., Papadopoulos, M.C., Watanabe, H., Yan, D., Manley, G.T., Verkman, A.S. J. Cell. Sci. (2005) [Pubmed]
  15. Changes in intracellular sodium during the hydroosmotic response to vasopressin. Brem, A.S., Matheson, K.L., Pacholski, M., Inman, K., Lawler, R. Kidney Int. (1991) [Pubmed]
  16. The choice of models relating tritiated water absorption to subepithelial blood flow in the rumen of sheep. Dobson, A. J. Physiol. (Lond.) (1979) [Pubmed]
  17. Hydrogen peroxide-mediated corneal endothelial damage. Induction by oxygen free radical. Hull, D.S., Green, K., Thomas, L., Alderman, N. Invest. Ophthalmol. Vis. Sci. (1984) [Pubmed]
  18. Intracellular calcium as a modulator of transepithelial permeability to water in frog urinary bladder. Hardy, M.A. J. Cell Biol. (1978) [Pubmed]
  19. Water transport in cultured cells from the rat inner medullary collecting duct. Hubbard, J.I. J. Am. Soc. Nephrol. (1996) [Pubmed]
  20. Effect of cholera toxin on the human jejunum. Petritsch, W., Eherer, A.J., Holzer-Petsche, U., Hinterleitner, T., Beubler, E., Krejs, G.J. Gut (1992) [Pubmed]
  21. Ouabain-insensitive salt and water movements in duck red cells. II. Norepinephrine stimulation of sodium plus potassium cotransport. Schmidt, W.F., McManus, T.J. J. Gen. Physiol. (1977) [Pubmed]
  22. Aquaporin-1, nothing but a water channel. Tsunoda, S.P., Wiesner, B., Lorenz, D., Rosenthal, W., Pohl, P. J. Biol. Chem. (2004) [Pubmed]
  23. Role of aquaporins in alveolar fluid clearance in neonatal and adult lung, and in oedema formation following acute lung injury: studies in transgenic aquaporin null mice. Song, Y., Fukuda, N., Bai, C., Ma, T., Matthay, M.A., Verkman, A.S. J. Physiol. (Lond.) (2000) [Pubmed]
  24. Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin-4 knockout mice. Chou, C.L., Ma, T., Yang, B., Knepper, M.A., Verkman, A.S. Am. J. Physiol. (1998) [Pubmed]
  25. Regulation of the immunoexpression of aquaporin 9 by ovarian hormones in the rat oviductal epithelium. Brañes, M.C., Morales, B., Ríos, M., Villalón, M.J. Am. J. Physiol., Cell Physiol. (2005) [Pubmed]
  26. Water permeability of an ovarian antral follicle is predominantly transcellular and mediated by aquaporins. McConnell, N.A., Yunus, R.S., Gross, S.A., Bost, K.L., Clemens, M.G., Hughes, F.M. Endocrinology (2002) [Pubmed]
  27. Opposing effects of glycerol on the protective function of the horny layer against irritants and on the penetration of hexyl nicotinate. Bettinger, J., Gloor, M., Peter, C., Kleesz, P., Fluhr, J., Gehring, W. Dermatology (Basel) (1998) [Pubmed]
  28. Movement and biological activity of drip-applied 1,3-dichloropropene and chloropicrin in raised mulched beds in the southeastern USA. Desaeger, J.A., Eger, J.E., Csinos, A.S., Gilreath, J.P., Olson, S.M., Webster, T.M. Pest Manag. Sci. (2004) [Pubmed]
  29. Role of aquaporin and sodium channel in pleural water movement. Jiang, J., Hu, J., Bai, C. Respiratory physiology & neurobiology. (2003) [Pubmed]
WikiGenes - Universities