The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Permeability

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Permeability

 

Psychiatry related information on Permeability

 

High impact information on Permeability

  • Plasma leakage caused by release of some other permeability factor (including kinin made by tissue kallikrein) would thus lead to activation of the plasma cascade in many forms of inflammation [11].
  • The high water permeability characteristic of mammalian red cell membranes is now known to be caused by the protein AQP1 [12].
  • In many cells, activation of homomeric P2X7 receptors induces a permeability increase to larger organic cations including some fluorescent dyes and also signals to the cytoskeleton; these changes probably involve additional interacting proteins [13].
  • A fiber matrix ultrafilter at the luminal entrance to the clefts is essential if microvascular walls are to retain their low permeability to macromolecules [14].
  • Here, Na+ channels dominate, although a minor fraction of membrane permeability comes from K+ channels, as in frog skin, colon, or distal nephron [15].
 

Chemical compound and disease context of Permeability

 

Biological context of Permeability

  • Affected individuals in these families had an increase in membrane permeability to Na and K that is particularly marked at 0 degrees C. We found that disease in these pedigrees was associated with a series of single amino-acid substitutions in the intramembrane domain of the erythrocyte band 3 anion exchanger, AE1 [21].
  • The Bcl-2 family of proteins, whose members may be anti-apoptotic or pro-apoptotic, regulates cell death by controlling this mitochondrial membrane permeability during apoptosis, but how that is achieved is unclear [22].
  • Protein phosphorylation catalysed by cyclic AMP-dependent, Ca2+/calmodulin-dependent and Ca2+/diacylglycerol-dependent protein kinases is important both in the modulation of synaptic transmission and in the regulation of neuronal membrane permeability (for reviews see refs 5-7) [23].
  • When administered alone, neuropeptide Y reduces the discharge of action potentials, probably by increasing the permeability of the membrane to potassium ions through the activation of a G protein; this effect is reduced in the presence of alpha2-adrenoceptor antagonists [24].
  • The permeability rises when the cells are supplied with exogenous cyclic AMP or when their cyclic AMP synthesis is stimulated with choleragen or hormones; it falls when [cAMP]i is lowered by application of serum or due to increase in cell density [25].
 

Anatomical context of Permeability

 

Associations of Permeability with chemical compounds

  • Parthenogenetic activation with the divalent ionophore, A23187, elicits fertilization membrane elevation more rapidly than does activation by fertilization; however, the morphological and permeability changes characteristic of hardening proceed more slowly [31].
  • Drugs that inhibit cytoskeletal function, such as cytochalasins B and D, colchicine, and vinblastine sulfate, are all relatively effective in preventing the TPA-induced morphological changes but not the increases in transepithelial permeability [32].
  • Correction of the permeability defect in hereditary stomatocytosis by dimethyl adipimidate [33].
  • These defects were reversible, as they could be normalized by plating Col6a1-/- myofibers on collagen VI or by addition of cyclosporin A (CsA), the inhibitor of mitochondrial permeability transition pore (PTP) [34].
  • Glycine ethyl ester inhibits the changes in morphology, solubility, and permeability, whereas sodium sulfite inhibits only the permeability block and resistance to solubilization by mercaptans [31].
 

Gene context of Permeability

  • Recent transgenic approaches have confirmed the profound permeability effects of VEGF (refs. 12-14), and have shown that transgenic angiopoietin-1 acts reciprocally as an anti-permeability factor when provided chronically during vessel formation, although it also profoundly affects vascular morphology when thus delivered [35].
  • The N-methyl D-aspartate (NMDA) receptor subtype of glutamate-gated ion channels possesses high calcium permeability and unique voltage-dependent sensitivity to magnesium and is modulated by glycine [36].
  • Vascular endothelial growth factor ([VEGF] also known as vascular permeability factor) is a potent mitogen and permeability factor, which has been suggested to play a role in embryonic and tumor angiogenesis [37].
  • Our finding of cAMP-mediated Cl(-) conductance suggests that, in vivo, at least some Delta F508 CFTR can reach the plasma membrane and affect Cl(-) permeability [38].
  • Microvascular endothelial water permeability, measured by a related pleural surface fluorescence method in which the airspace was filled with inert perfluorocarbon, was reduced more than 10-fold in AQP1 (-/-) vs. (+/+) mice [39].
 

Analytical, diagnostic and therapeutic context of Permeability

References

  1. Defective regulation of outwardly rectifying Cl- channels by protein kinase A corrected by insertion of CFTR. Egan, M., Flotte, T., Afione, S., Solow, R., Zeitlin, P.L., Carter, B.J., Guggino, W.B. Nature (1992) [Pubmed]
  2. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Lilien, J., Balsamo, J. Curr. Opin. Cell Biol. (2005) [Pubmed]
  3. Tumor necrosis factor/cachectin increases permeability of endothelial cell monolayers by a mechanism involving regulatory G proteins. Brett, J., Gerlach, H., Nawroth, P., Steinberg, S., Godman, G., Stern, D. J. Exp. Med. (1989) [Pubmed]
  4. Effects of the putative neutrophil-generated toxin, hypochlorous acid, on membrane permeability and transport systems of Escherichia coli. Albrich, J.M., Gilbaugh, J.H., Callahan, K.B., Hurst, J.K. J. Clin. Invest. (1986) [Pubmed]
  5. Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. Yepes, M., Sandkvist, M., Moore, E.G., Bugge, T.H., Strickland, D.K., Lawrence, D.A. J. Clin. Invest. (2003) [Pubmed]
  6. Medical therapies for mood disorders alter the blood-brain barrier. Preskorn, S.H., Irwin, G.H., Simpson, S., Friesen, D., Rinne, J., Jerkovich, G. Science (1981) [Pubmed]
  7. Aluminium increases permeability of the blood-brain barrier to labelled DSIP and beta-endorphin: possible implications for senile and dialysis dementia. Banks, W.A., Kastin, A.J. Lancet (1983) [Pubmed]
  8. Environmental stress-induced gastrointestinal permeability is mediated by endogenous glucocorticoids in the rat. Meddings, J.B., Swain, M.G. Gastroenterology (2000) [Pubmed]
  9. Sleep-related brain activation does not increase the permeability of the blood-brain barrier to glucose. Silvani, A., Asti, V., Berteotti, C., Bojic, T., Cianci, T., Ferrari, V., Franzini, C., Lenzi, P., Zoccoli, G. J. Cereb. Blood Flow Metab. (2005) [Pubmed]
  10. Receptor-mediated transport of human amyloid beta-protein 1-40 and 1-42 at the blood-brain barrier. Poduslo, J.F., Curran, G.L., Sanyal, B., Selkoe, D.J. Neurobiol. Dis. (1999) [Pubmed]
  11. Kinin formation: mechanisms and role in inflammatory disorders. Proud, D., Kaplan, A.P. Annu. Rev. Immunol. (1988) [Pubmed]
  12. Cellular and molecular biology of the aquaporin water channels. Borgnia, M., Nielsen, S., Engel, A., Agre, P. Annu. Rev. Biochem. (1999) [Pubmed]
  13. Molecular physiology of P2X receptors. North, R.A. Physiol. Rev. (2002) [Pubmed]
  14. Microvascular permeability. Michel, C.C., Curry, F.E. Physiol. Rev. (1999) [Pubmed]
  15. Ionic channels in epithelial cell membranes. Van Driessche, W., Zeiske, W. Physiol. Rev. (1985) [Pubmed]
  16. Cell cycle dependence of chloride permeability in normal and cystic fibrosis lymphocytes. Bubien, J.K., Kirk, K.L., Rado, T.A., Frizzell, R.A. Science (1990) [Pubmed]
  17. Bradykinin production and increased pulmonary endothelial permeability during acute respiratory failure in unanesthetized sheep. O'Brodovich, H.M., Stalcup, S.A., Pang, L.M., Lipset, J.S., Mellins, R.B. J. Clin. Invest. (1981) [Pubmed]
  18. Haemophilus influenzae lipopolysaccharide-induced blood brain barrier permeability during experimental meningitis in the rat. Wispelwey, B., Lesse, A.J., Hansen, E.J., Scheld, W.M. J. Clin. Invest. (1988) [Pubmed]
  19. Angiotensin converting enzyme inhibition ameliorates glomerular filtration of macromolecules and water and lessens glomerular injury in the rat. Remuzzi, A., Puntorieri, S., Battaglia, C., Bertani, T., Remuzzi, G. J. Clin. Invest. (1990) [Pubmed]
  20. Intestinal permeability in patients with Crohn's disease and their healthy relatives. Katz, K.D., Hollander, D., Vadheim, C.M., McElree, C., Delahunty, T., Dadufalza, V.D., Krugliak, P., Rotter, J.I. Gastroenterology (1989) [Pubmed]
  21. Monovalent cation leaks in human red cells caused by single amino-acid substitutions in the transport domain of the band 3 chloride-bicarbonate exchanger, AE1. Bruce, L.J., Robinson, H.C., Guizouarn, H., Borgese, F., Harrison, P., King, M.J., Goede, J.S., Coles, S.E., Gore, D.M., Lutz, H.U., Ficarella, R., Layton, D.M., Iolascon, A., Ellory, J.C., Stewart, G.W. Nat. Genet. (2005) [Pubmed]
  22. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Shimizu, S., Narita, M., Tsujimoto, Y. Nature (1999) [Pubmed]
  23. cGMP-dependent protein kinase enhances Ca2+ current and potentiates the serotonin-induced Ca2+ current increase in snail neurones. Paupardin-Tritsch, D., Hammond, C., Gerschenfeld, H.M., Nairn, A.C., Greengard, P. Nature (1986) [Pubmed]
  24. Interaction between neuropeptide Y and noradrenaline on central catecholamine neurons. Illes, P., Regenold, J.T. Nature (1990) [Pubmed]
  25. Correction of cell-cell communication defect by introduction of a protein kinase into mutant cells. Wiener, E.C., Loewenstein, W.R. Nature (1983) [Pubmed]
  26. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Rosenfeld, M.A., Yoshimura, K., Trapnell, B.C., Yoneyama, K., Rosenthal, E.R., Dalemans, W., Fukayama, M., Bargon, J., Stier, L.E., Stratford-Perricaudet, L. Cell (1992) [Pubmed]
  27. Effect of cholesterol on the non-electrolyte permeability of planar lecithin membranes. Gallucci, E., Micelli, S., Lippe, C. Nature (1975) [Pubmed]
  28. Regulation of epithelial tight junction permeability by cyclic AMP. Duffey, M.E., Hainau, B., Ho, S., Bentzel, C.J. Nature (1981) [Pubmed]
  29. Inhibition by anandamide of gap junctions and intercellular calcium signalling in striatal astrocytes. Venance, L., Piomelli, D., Glowinski, J., Giaume, C. Nature (1995) [Pubmed]
  30. Proposed mechanism of cholinergic action in smooth muscle. Salmon, D.M., Honeyman, T.W. Nature (1980) [Pubmed]
  31. Sequential biochemical and morphological events during assembly of the fertilization membrane of the sea urchin. Veron, M., Foerder, C., Eddy, E.M., Shapiro, n.u.l.l. Cell (1977) [Pubmed]
  32. Tumor promoter-induced changes in the permeability of epithelial cell tight junctions. Ojakian, G.K. Cell (1981) [Pubmed]
  33. Correction of the permeability defect in hereditary stomatocytosis by dimethyl adipimidate. Mentzer, W.C., Lubin, B.H., Emmons, S. N. Engl. J. Med. (1976) [Pubmed]
  34. Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Irwin, W.A., Bergamin, N., Sabatelli, P., Reggiani, C., Megighian, A., Merlini, L., Braghetta, P., Columbaro, M., Volpin, D., Bressan, G.M., Bernardi, P., Bonaldo, P. Nat. Genet. (2003) [Pubmed]
  35. Angiopoietin-1 protects the adult vasculature against plasma leakage. Thurston, G., Rudge, J.S., Ioffe, E., Zhou, H., Ross, L., Croll, S.D., Glazer, N., Holash, J., McDonald, D.M., Yancopoulos, G.D. Nat. Med. (2000) [Pubmed]
  36. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Monyer, H., Sprengel, R., Schoepfer, R., Herb, A., Higuchi, M., Lomeli, H., Burnashev, N., Sakmann, B., Seeburg, P.H. Science (1992) [Pubmed]
  37. The related FLT4, FLT1, and KDR receptor tyrosine kinases show distinct expression patterns in human fetal endothelial cells. Kaipainen, A., Korhonen, J., Pajusola, K., Aprelikova, O., Persico, M.G., Terman, B.I., Alitalo, K. J. Exp. Med. (1993) [Pubmed]
  38. Chloride conductance and genetic background modulate the cystic fibrosis phenotype of Delta F508 homozygous twins and siblings. Bronsveld, I., Mekus, F., Bijman, J., Ballmann, M., de Jonge, H.R., Laabs, U., Halley, D.J., Ellemunter, H., Mastella, G., Thomas, S., Veeze, H.J., Tümmler, B. J. Clin. Invest. (2001) [Pubmed]
  39. Lung fluid transport in aquaporin-1 and aquaporin-4 knockout mice. Bai, C., Fukuda, N., Song, Y., Ma, T., Matthay, M.A., Verkman, A.S. J. Clin. Invest. (1999) [Pubmed]
  40. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Ashcroft, F.M., Harrison, D.E., Ashcroft, S.J. Nature (1984) [Pubmed]
  41. Blood-brain barrier: endogenous modulation by adrenal-cortical function. Long, J.B., Holaday, J.W. Science (1985) [Pubmed]
  42. Gap junctional conductance and permeability are linearly related. Verselis, V., White, R.L., Spray, D.C., Bennett, M.V. Science (1986) [Pubmed]
  43. Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. Luyer, M.D., Greve, J.W., Hadfoune, M., Jacobs, J.A., Dejong, C.H., Buurman, W.A. J. Exp. Med. (2005) [Pubmed]
  44. Contribution of lymphatic absorption to loss of ultrafiltration and solute clearances in continuous ambulatory peritoneal dialysis. Mactier, R.A., Khanna, R., Twardowski, Z., Moore, H., Nolph, K.D. J. Clin. Invest. (1987) [Pubmed]
 
WikiGenes - Universities