The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Characterization of a second member of the subfamily of calcium-binding mitochondrial carriers expressed in human non-excitable tissues.

We have recently identified a subfamily of mitochondrial carriers that bind calcium, and cloned ARALAR1, a member of this subfamily expressed in human muscle and brain. We have now cloned a second human ARALAR gene (ARALAR2) coding for a protein 78.3% identical to Aralar1, but expressed in liver and non-excitable tissues. Aralar2 is identical to citrin, the product of the gene mutated in type-II citrullinaemia [Kobayashi, Sinasac, Iijima, Boright, Begum, Lee, Yasuda, Ikeda, Hirano, Terazono et al. (1999) Nat. Genet. 22, 159-163]. A related protein, DmAralar, 69% identical to Aralar1, was found in Drosophila melanogaster, the DMARALAR locus lying on the right arm of the third chromosome, band 99F. The N-terminal half of Aralar2/citrin is able to bind calcium and this requires the presence of the two most distal EF-hands. The localization of Aralar2/citrin expressed in human cell lines is mitochondrial, the C-terminal half containing sufficient information for import and assembly into mitochondria. The C-terminal half of Aralar proteins is related to the yeast YPR020c gene, with a very high sequence conservation (54.3% identity), suggesting that these proteins play an important role. Thus Aralar proteins are probably expressed in all tissues in an isoform-specific fashion, where they function as calcium-regulated metabolite (possibly anionic) carriers.[1]

References

 
WikiGenes - Universities