The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Hyperosmolality induces activation of cPKC and nPKC, a requirement for ERK1/2 activation in NIH/3T3 cells.

Protein kinase C (PKC) has been reported to be associated with the activation of extracellular signal-regulated kinase ( ERK) by hyperosmolality. However, it is unclear whether hyperosmolality induces PKC activation and which PKC isoforms are involved in ERK activation. In this study, we demonstrate that NaCl increases total PKC activity and induces PKCalpha, PKCdelta, and PKCepsilon translocation from the cytosol to the membrane in NIH/3T3 cells, suggesting that hyperosmotic stress activates conventional PKC (cPKC) and novel PKC (nPKC). Further studies show that NaCl-inducible ERK1 and ERK2 (ERK1/2) activation is a consequence of cPKC and nPKC activation, because either downregulation with 12-O-tetradecanoylphorbol 13-acetate or selective inhibition of cPKC and nPKC by GF-109203X and rottlerin largely inhibited the stimulation of ERK1/2 phosphorylation by NaCl. In addition, we show that NaCl increases diacylglycerol (DAG) levels and that a phospholipase C (PLC) inhibitor, U-73122, inhibits NaCl-induced ERK1/2 phosphorylation. These results, together, suggest that a hyperosmotic NaCl-induced signaling pathway that leads to activation of ERK1/2 may sequentially involve PLC activation, DAG release, and cPKC and nPKC activation.[1]

References

  1. Hyperosmolality induces activation of cPKC and nPKC, a requirement for ERK1/2 activation in NIH/3T3 cells. Zhuang, S., Hirai, S.I., Ohno, S. Am. J. Physiol., Cell Physiol. (2000) [Pubmed]
 
WikiGenes - Universities