The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The different pH optima and substrate specificities of extracellular and vacuolar invertases from plants are determined by a single amino-acid substitution.

Different plant invertase isoenzymes are characterized by a single amino-acid difference in a conserved sequence, the WEC-P/V-D box. A proline residue is present in this sequence motif of extracellular invertase sequences, whereas a valine is found at the same position of vacuolar invertase sequences. The role of this distinct difference was studied by substituting the proline residue of extracellular invertase CIN1 from Chenopodium rubrum with a valine residue, by site-directed mutagenesis. The mutated gene was heterologously expressed in an invertase-deficient Saccharomyces cerevisiae strain. The single amino-acid difference was shown to be the molecular basis for two enzymatic properties of invertase isoenzymes, for both the pH optimum and the substrate specificity. A proline in the WEC-P/V-D box determines the more acidic pH optimum and the higher cleavage rate of raffinose of extracellular invertases, compared to vacuolar invertases that have a valine residue at this position.[1]

References

 
WikiGenes - Universities