Chymase as a proangiogenic factor. A possible involvement of chymase-angiotensin-dependent pathway in the hamster sponge angiogenesis model.
We investigated the profound involvement of chymase, an alternative angiotensin II-generating enzyme, in angiogenesis using a hamster sponge implant model. In vivo transfection of human pro-chymase cDNA or a direct injection of purified chymase into the sponges implanted resulted in marked increment of hemoglobin contents in the sponge granuloma tissues, demonstrating that chymase has an ability to elicit angiogenesis and is a potent angiogenic factor. Daily injection of basic fibroblast growth factor into the sponges implanted also induced angiogenesis, which was suppressed by the treatment with chymostatin, an inhibitor of chymase, or TCV-116, an antagonist of angiotensin II (Ang II) type 1 receptor. Expression of chymase mRNA and production of Ang II in the granuloma tissues were enhanced by the stimulation with basic fibroblast growth factor. Chymase activity in the sponge granulomas increased in parallel with the rise in hemoglobin contents, and mast cells observed in the granuloma tissues were positively stained with anti-chymase antibody. Exogenous administration not only of Ang II but of angiotensin I (Ang I) directly into the sponges could enhance angiogenesis. Chymostatin inhibited the angiogenesis induced by Ang I but not Ang II, suggesting the presence of a chymase-like Ang II-generating activity in the sponge granulomas. Our results may suggest a potential ability of chymase to promote angiogenesis through the local chymase-dependent and angiotensin-converting enzyme-dependent Ang II generating system in pathophysiological angiogenesis.[1]References
- Chymase as a proangiogenic factor. A possible involvement of chymase-angiotensin-dependent pathway in the hamster sponge angiogenesis model. Muramatsu, M., Katada, J., Hayashi, I., Majima, M. J. Biol. Chem. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg