The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The stachydrine catabolism region in Sinorhizobium meliloti encodes a multi-enzyme complex similar to the xenobiotic degrading systems in other bacteria.

Stachydrine (proline betaine) can be used by Sinorhizobium meliloti as a source of carbon and nitrogen. Catabolism depends on an initial N-demethylation, after which the resultant N-methyl proline enters general metabolism. Deletion and insertion mutagenesis demonstrated that the information necessary for catabolism is carried on the symbiotic plasmid (pSym) distal to nodD2 and the nod-nif cluster. Sequencing of an 8.5kb fragment spanning this region revealed four open reading frames with functional homology to known proteins, including a putative monooxygenase and a putative NADPH-FMN-reductase, which were shown by insertional and frame-shift mutagenesis to be necessary for stachydrine catabolism. Other open reading frames, encoding a putative flavoprotein and a repressor, were judged not to be required for stachydrine catabolism, since they were not included in a fragment capable of complementing a deletion of the entire stc region. Sequence and mutagenesis data suggest that stachydrine is demethylated by an iron-sulfur monooxygenase of the Rieske type with a requirement for a specific reductase. The stc catabolic cluster, therefore, resembles xenobiotic degradation in other bacteria and recalls rhizopine catabolism in S. meliloti. Stachydrine appears to have multiple roles in osmoprotection, nutrition and nodulation. Genes involved in stachydrine catabolism are also necessary for carnitine degradation; thus, they could be important in the catabolism of a variety of root exudates and mediate other relationships.[1]

References

  1. The stachydrine catabolism region in Sinorhizobium meliloti encodes a multi-enzyme complex similar to the xenobiotic degrading systems in other bacteria. Burnet, M.W., Goldmann, A., Message, B., Drong, R., El Amrani, A., Loreau, O., Slightom, J., Tepfer, D. Gene (2000) [Pubmed]
 
WikiGenes - Universities