Effects of neurotrophins on cortical plasticity: same or different?
Neurotrophins are important regulators of visual cortical plasticity. It is still unclear, however, whether they play similar or different roles and which are their effects on the electrical activity of cortical neurons in vivo. We therefore compared the effects of all neurotrophins, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-4 (NT-4), and neurotrophin-3 (NT-3) on visual cortical plasticity and on cell spontaneous and visually evoked activity. Rats were monocularly deprived for 1 week at the peak of the critical period, and neurotrophins were infused intracortically. The main finding is that, with the exception of NT-3, all neurotrophins affect the outcome of monocular deprivation, but there are clear differences in their mechanisms of action. In particular, NT-4 and NGF counteract monocular deprivation effects without causing detectable alterations either in spontaneous or visually evoked neuronal activity. BDNF is less effective on ocular dominance plasticity and, in addition, strongly affects spontaneous and visually evoked activity in cortical neurons.[1]References
- Effects of neurotrophins on cortical plasticity: same or different? Lodovichi, C., Berardi, N., Pizzorusso, T., Maffei, L. J. Neurosci. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg