The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Dominance, Ocular

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Dominance, Ocular

 

Psychiatry related information on Dominance, Ocular

 

High impact information on Dominance, Ocular

  • Hypotheses about the mechanisms underlying ocular-dominance plasticity assume the activation of NMDA (N-methyl-D-aspartate) receptors and subsequent calcium influx as a trigger of synaptic modifications [5].
  • The staining for GABA and GAD in neuronal somata and terminals was markedly reduced within ocular dominance columns associated with a removed or a visually deprived eye, suggesting that the GABA concentration in cortical neurones may depend on their levels of activity [6].
  • In the present study, patterns of ocular dominance and orientation selectivity were obtained repeatedly from the same patch of cortex using the dye merocyanine oxazolone, together with current image-processing techniques [7].
  • These include the co-localization of glutamic acid decarboxylase (GAD, the biosynthetic enzyme of the inhibitory neurotransmitter, gamma-aminobutyric acid) with the mitochondrial enzyme, cytochrome oxidase (CO) in functionally distinct subcompartments of ocular dominance columns [8].
  • Ocular dominance plasticity under metabotropic glutamate receptor blockade [9].
 

Biological context of Dominance, Ocular

  • The maintenance of GluR2 in these output layers is governed by visual input and neuronal activity, as monocular impulse blockade induced a down-regulation of this subunit in deprived ocular dominance columns [10].
  • This suggests that NOS activity is not downstream of NMDA receptor activation during retinotectal synaptic competition because NMDA receptor activation is necessary for segregation of retinal afferents into ocular dominance stripes in the doubly innervated tadpole optic tectum [11].
 

Anatomical context of Dominance, Ocular

 

Associations of Dominance, Ocular with chemical compounds

  • Using the protein synthesis inhibitor cycloheximide, we investigated a role for protein synthesis in ocular dominance plasticity [16].
  • Additionally, domains sharing the ocular dominance and orientation preference of the neurons at the injection sites were visualized by 2-deoxyglucose (2-DG) autoradiography [17].
  • This rearing reduced the degree of binocular interaction in striate cortical neurons and caused a modest shift in eye dominance away from the atropine-treated eye [18].
  • This "binocular" spread of DG uptake into the inappropriate eye dominance strip in 4Ca may be related to the appearance of orientation tuning and orientation columns in that layer [19].
  • Nevertheless, blockade of NOS with daily injections of nitroarginine from P14 to P56 fails to prevent the formation of ocular dominance columns, although NOS activity is reduced by >98% [20].
 

Gene context of Dominance, Ocular

 

Analytical, diagnostic and therapeutic context of Dominance, Ocular

References

  1. Association of ocular dominance and anisometropic myopia. Cheng, C.Y., Yen, M.Y., Lin, H.Y., Hsia, W.W., Hsu, W.M. Invest. Ophthalmol. Vis. Sci. (2004) [Pubmed]
  2. Pattern of ocular dominance columns in human striate cortex in strabismic amblyopia. Horton, J.C., Hocking, D.R. Vis. Neurosci. (1996) [Pubmed]
  3. Evidence for an enhanced role of GABA inhibition in visual cortical ocular dominance of cats reared with abnormal monocular experience. Mower, G.D., Christen, W.G. Brain Res. Dev. Brain Res. (1989) [Pubmed]
  4. Cyclic AMP-dependent protein kinase mediates ocular dominance shifts in cat visual cortex. Beaver, C.J., Ji, Q., Fischer, Q.S., Daw, N.W. Nat. Neurosci. (2001) [Pubmed]
  5. Ocular dominance plasticity in adult cat visual cortex after transplantation of cultured astrocytes. Müller, C.M., Best, J. Nature (1989) [Pubmed]
  6. Reduction in number of immunostained GABAergic neurones in deprived-eye dominance columns of monkey area 17. Hendry, S.H., Jones, E.G. Nature (1986) [Pubmed]
  7. Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Blasdel, G.G., Salama, G. Nature (1986) [Pubmed]
  8. Monoclonal antibody that identifies subsets of neurones in the central visual system of monkey and cat. Hendry, S.H., Hockfield, S., Jones, E.G., McKay, R. Nature (1984) [Pubmed]
  9. Ocular dominance plasticity under metabotropic glutamate receptor blockade. Hensch, T.K., Stryker, M.P. Science (1996) [Pubmed]
  10. AMPA glutamate receptor subunit 2 in normal and visually deprived macaque visual cortex. Wong-Riley, M.T., Jacobs, P. Vis. Neurosci. (2002) [Pubmed]
  11. Nitric oxide in the retinotectal system: a signal but not a retrograde messenger during map refinement and segregation. Rentería, R.C., Constantine-Paton, M. J. Neurosci. (1999) [Pubmed]
  12. Brain-derived neurotrophic factor enhances expression of superior cervical ganglia clone 10 in lateral geniculate nucleus and visual cortex of developing kittens. Imamura, K., Morii, H., Nakadate, K., Yamada, T., Mataga, N., Watanabe, Y., Mori, N. Eur. J. Neurosci. (2006) [Pubmed]
  13. Transient co-localization of calretinin, parvalbumin, and calbindin-D28K in developing visual cortex of monkey. Yan, Y.H., Van Brederode, J.F., Hendrickson, A.E. J. Neurocytol. (1995) [Pubmed]
  14. Effects of monocular deprivation on the expression pattern of alpha-1 and beta-1 adrenergic receptors in the kitten visual cortex. Nakadate, K., Imamura, K., Watanabe, Y. Neurosci. Res. (2001) [Pubmed]
  15. Mandibular deviations in TMD and non-TMD groups related to eye dominance and head posture. Pradham, N.S., White, G.E., Mehta, N., Forgione, A. The Journal of clinical pediatric dentistry. (2001) [Pubmed]
  16. Rapid ocular dominance plasticity requires cortical but not geniculate protein synthesis. Taha, S., Stryker, M.P. Neuron (2002) [Pubmed]
  17. Functional specificity of long-range intrinsic and interhemispheric connections in the visual cortex of strabismic cats. Schmidt, K.E., Kim, D.S., Singer, W., Bonhoeffer, T., Löwel, S. J. Neurosci. (1997) [Pubmed]
  18. Effects of early unilateral blur on the macaque's visual system. III. Physiological observations. Movshon, J.A., Eggers, H.M., Gizzi, M.S., Hendrickson, A.E., Kiorpes, L., Boothe, R.G. J. Neurosci. (1987) [Pubmed]
  19. Functional anatomy of macaque striate cortex. I. Ocular dominance, binocular interactions, and baseline conditions. Tootell, R.B., Hamilton, S.L., Silverman, M.S., Switkes, E. J. Neurosci. (1988) [Pubmed]
  20. Establishment of patterned thalamocortical connections does not require nitric oxide synthase. Finney, E.M., Shatz, C.J. J. Neurosci. (1998) [Pubmed]
  21. Inhibition of ocular dominance column formation by infusion of NT-4/5 or BDNF. Cabelli, R.J., Hohn, A., Shatz, C.J. Science (1995) [Pubmed]
  22. Enhanced NR2A subunit expression and decreased NMDA receptor decay time at the onset of ocular dominance plasticity in the ferret. Roberts, E.B., Ramoa, A.S. J. Neurophysiol. (1999) [Pubmed]
  23. Trk B signalling controls LTP but not LTD expression in the developing rat visual cortex. Sermasi, E., Margotti, E., Cattaneo, A., Domenici, L. Eur. J. Neurosci. (2000) [Pubmed]
  24. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. McGee, A.W., Yang, Y., Fischer, Q.S., Daw, N.W., Strittmatter, S.M. Science (2005) [Pubmed]
  25. Effects of neurotrophins on cortical plasticity: same or different? Lodovichi, C., Berardi, N., Pizzorusso, T., Maffei, L. J. Neurosci. (2000) [Pubmed]
  26. Concentration-dependent suppression by beta-adrenergic antagonists of the shift in ocular dominance following monocular deprivation in kitten visual cortex. Shirokawa, T., Kasamatsu, T. Neuroscience (1986) [Pubmed]
  27. Major glutamatergic projection from subplate into visual cortex during development. Finney, E.M., Stone, J.R., Shatz, C.J. J. Comp. Neurol. (1998) [Pubmed]
  28. N-methyl-D-aspartate subunit R1 involvement in the postnatal organization of the primary visual cortex of Callithrix jacchus. Fonta, C., Chappert, C., Imbert, M. J. Comp. Neurol. (1997) [Pubmed]
  29. Eye-specific segregation of optic afferents in mammals, fish, and frogs: the role of activity. Schmidt, J.T., Tieman, S.B. Cell. Mol. Neurobiol. (1985) [Pubmed]
  30. Substantial reduction of noradrenaline in kitten visual cortex by intraventricular injections of 6-hydroxydopamine does not always prevent ocular dominance shifts after monocular deprivation. Daw, N.W., Videen, T.O., Rader, R.K., Robertson, T.W., Coscia, C.J. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (1985) [Pubmed]
 
WikiGenes - Universities