The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The non-oxidative degradation of ascorbic acid at physiological conditions.

The degradation of L-ascorbate (AsA) and its primary oxidation products, L-dehydroascorbate (DHA) and 2,3-L-diketogulonate (2, 3-DKG) were studied under physiological conditions. Analysis determined that L-erythrulose (ERU) and oxalate were the primary degradation products of ASA regardless of which compound was used as the starting material. The identification of ERU was determined by proton decoupled (13)C-nuclear magnetic resonance spectroscopy, and was quantified by high performance liquid chromatography, and enzymatic analysis. The molar yield of ERU from 2,3-DKG at pH 7.0 37 degrees C and limiting O(2)97%. This novel ketose product of AsA degradation, was additionally qualitatively identified by gas-liquid chromatography, and by thin layer chromatography. ERU is an extremely reactive ketose, which rapidly glycates and crosslinks proteins, and therefore may mediate the AsA-dependent modification of protein (ascorbylation) seen in vitro, and also proposed to occur in vivo in human lens during diabetic and age-onset cataract formation.[1]

References

  1. The non-oxidative degradation of ascorbic acid at physiological conditions. Simpson, G.L., Ortwerth, B.J. Biochim. Biophys. Acta (2000) [Pubmed]
 
WikiGenes - Universities