The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Ketose     1,2,4,5,6-pentahydroxyhexan- 3-one

Synonyms: AC1L97GH, 56550-EP2295422A2, 56550-EP2298769A1, 56550-EP2308878A2
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of C01383

 

High impact information on C01383

  • The ketose caused increases in the concentration of fructose 1-phosphate, which reached values known to relieve the inhibition exerted on glucokinase by its regulatory protein [2].
  • The epimeric specificity of the catalytic site of rabbit muscle phosphofructokinase was investigated by testing three ketose phosphates as alternate substrates [3].
  • Transport and phosphorylation of L-sorbose was catalyzed by membrane-bound enzyme IIsor of the phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system, specific for and regulated by this ketose and different from all other enzymes II described thus far [4].
  • Yeast transketolase, in addition to catalyzing the transferase reaction through utilization of two substrates--the donor substrate (ketose) and the acceptor substrate (aldose)--is also able to catalyze a one-substrate reaction with only aldose (glycolaldehyde) as substrate [5].
  • Previous studies showed that carnosine can protect proteins against aldehyde-containing cross-linking agents such as aldose and ketose hexose and triose sugars, and malon-dialdehyde, the lipid peroxidation product [6].
 

Biological context of C01383

 

Anatomical context of C01383

 

Associations of C01383 with other chemical compounds

  • Apart from catalyzing the common two-substrate reaction with ketose as donor substrate and aldose as acceptor substrate, transketolase is also able to catalyze a one-substrate reaction utilizing only ketose (xylulose 5-phosphate) as substrate [12].
 

Analytical, diagnostic and therapeutic context of C01383

References

  1. Genetic control of manno(fructo)kinase activity in Escherichia coli. Sproul, A.A., Lambourne, L.T., Jean-Jacques D, J., Kornberg, H.L. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  2. Fructose administration stimulates glucose phosphorylation in the livers of anesthetized rats. Van Schaftingen, E., Davies, D.R. FASEB J. (1991) [Pubmed]
  3. The fructose 6-phosphate site of phosphofructokinase. Epimeric specificity. Koerner, T.A., Voll, R.J., Ashour, A.L., Younathan, E.S. J. Biol. Chem. (1976) [Pubmed]
  4. L-Sorbose metabolism in Klebsiella pneumoniae and Sor+ derivatives of Escherichia coli K-12 and chemotaxis toward sorbose. Sprenger, G.A., Lengeler, J.W. J. Bacteriol. (1984) [Pubmed]
  5. A hitherto unknown transketolase-catalyzed reaction. Sevostyanova, I.A., Solovjeva, O.N., Kochetov, G.A. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  6. Carnosine protects proteins against methylglyoxal-mediated modifications. Hipkiss, A.R., Chana, H. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
  7. Somatic antigens of Pseudomonas aeruginosa. The structure of O-specific polysaccharide chains of P. aeruginosa O10 (Lányi) lipopolysaccharides. Knirel, Y.A., Vinogradov, E.V., Shashkov, A.S., Dmitriev, B.A., Kochetkov, N.K., Stanislavsky, E.S., Mashilova, G.M. Eur. J. Biochem. (1986) [Pubmed]
  8. Pluripotent protective effects of carnosine, a naturally occurring dipeptide. Hipkiss, A.R., Preston, J.E., Himsworth, D.T., Worthington, V.C., Keown, M., Michaelis, J., Lawrence, J., Mateen, A., Allende, L., Eagles, P.A., Abbott, N.J. Ann. N. Y. Acad. Sci. (1998) [Pubmed]
  9. Improved procedures for the conjugation of oligosaccharides to protein by reductive amination. Roy, R., Katzenellenbogen, E., Jennings, H.J. Can. J. Biochem. Cell Biol. (1984) [Pubmed]
  10. Plasma D-glucose, D-fructose and insulin responses after oral administration of D-glucose, D-fructose and sucrose to normal rats. Prieto, P.G., Cancelas, J., Villanueva-Peñacarrillo, M.L., Valverde, I., Malaisse, W.J. Journal of the American College of Nutrition. (2004) [Pubmed]
  11. Ketose induced respiratory inhibition in isolated hepatocytes. Martínez, P., Carrascosa, J.M., Núñez de Castro, I. Rev. Esp. Fisiol. (1987) [Pubmed]
  12. One-substrate transketolase-catalyzed reaction. Bykova, I.A., Solovjeva, O.N., Meshalkina, L.E., Kovina, M.V., Kochetov, G.A. Biochem. Biophys. Res. Commun. (2001) [Pubmed]
  13. In situ product removal of ketoses by immobilized 3-amino phenyl boronic acid: effect of immobilization method on pH profile. Dukler, A., Freeman, A. Biotechnol. Bioeng. (2001) [Pubmed]
  14. The non-oxidative degradation of ascorbic acid at physiological conditions. Simpson, G.L., Ortwerth, B.J. Biochim. Biophys. Acta (2000) [Pubmed]
 
WikiGenes - Universities