The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis.

In eukaryotic cells, chromosomal DNA replication begins with the formation of pre-replication complexes at replication origins. Formation and maintenance of pre-replication complexes is dependent upon CDC6 (ref. 1), a protein which allows assembly of MCM2-7 proteins, which are putative replicative helicases. The functional assembly of MCM proteins into chromatin corresponds to replication licensing. Removal of these proteins from chromatin in S phase is crucial in origins firing regulation. We have identified a protein that is required for the assembly of pre-replication complexes, in a screen for maternally expressed genes in Xenopus. This factor (XCDT1) is a relative of fission yeast cdt1, a protein proposed to function in DNA replication, and is the first to be identified in vertebrates. Here we show, using Xenopus in vitro systems, that XCDT1 is required for chromosomal DNA replication. XCDT1 associates with pre-replicative chromatin in a manner dependent on ORC protein and is removed from chromatin at the time of initiation of DNA synthesis. Immunodepletion and reconstitution experiments show that XCDT1 is required to load MCM2-7 proteins onto pre-replicative chromatin. These findings indicate that XCDT1 is an essential component of the system that regulates origins firing during S phase.[1]

References

  1. XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis. Maiorano, D., Moreau, J., Méchali, M. Nature (2000) [Pubmed]
 
WikiGenes - Universities