The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The Saccharomyces cerevisiae RuvB-like protein, Tih2p, is required for cell cycle progression and RNA polymerase II-directed transcription.

Two highly conserved RuvB-like putative DNA helicases, p47/TIP49b and p50/TIP49a, have been identified in the eukaryotes. Here, we study the function of Saccharomyces cerevisiae TIH2, which corresponds to mammalian p47/TIP49b. Tih2p is required for vegetative cell growth and localizes in the nucleus. Immunoprecipitation analysis revealed that Tih2p tightly interacts with Tih1p, the counterpart of mammalian p50/TIP49a, which has been shown to interact with the TATA-binding protein and the RNA polymerase II holoenzyme complex. Furthermore, the mutational study of the Walker A motif, which is required for nucleotide binding and hydrolysis, showed that this motif plays indispensable roles in the function of Tih2p. When a temperature-sensitive tih2 mutant, tih2-160, was incubated at the nonpermissive temperature, cells were rapidly arrested in the G(1) phase. Northern blot analysis revealed that Tih2p is required for transcription of G(1) cyclin and of several ribosomal protein genes. The similarities between the mutant phenotypes of tih2-160 and those of taf145 mutants suggest a role for TIH2 in the regulation of RNA polymerase II-directed transcription.[1]

References

  1. The Saccharomyces cerevisiae RuvB-like protein, Tih2p, is required for cell cycle progression and RNA polymerase II-directed transcription. Lim, C.R., Kimata, Y., Ohdate, H., Kokubo, T., Kikuchi, N., Horigome, T., Kohno, K. J. Biol. Chem. (2000) [Pubmed]
 
WikiGenes - Universities