The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mapping the zinc ligands of S100A2 by site-directed mutagenesis.

S100 family proteins are characterized by short individual N and C termini and a conserved central part, harboring two Ca(2+)-binding EF-hands, one of them highly conserved among EF-hand family proteins and the other characteristic for S100 proteins. In addition to Ca(2+), several members of the S100 protein family, including S100A2, bind Zn(2+). Two regions in the amino acid sequences of S100 proteins, namely the helices of the N-terminal EF-hand motif and the very C-terminal loop are believed to be involved in Zn(2+)-binding due to the presence of histidine and/or cysteine residues. Human S100A2 contains four cysteine residues, each of them located at positions that may be important for Zn(2+) binding. We have now constructed and purified 10 cysteine-deficient mutants of human S100A2 by site-directed mutagenesis and investigated the contribution of the individual cysteine residues to Zn(2+) binding. Here we show that Cys(1(3)) (the number in parentheses indicating the position in the sequence of S100A2) is the crucial determinant for Zn(2+) binding in association with conformational changes as determined by internal tyrosine fluorescence. Solid phase Zn(2+) binding assays also revealed that the C-terminal residues Cys(3(87)) and Cys(4(94)) mediated a second type of Zn(2+) binding, not associated with detectable conformational changes in the molecule. Cys(2(22)), by contrast, which is located within the first EF hand motif affected neither Ca(2+) nor Zn(2+) binding, and a Cys "null" mutant was entirely incapable of ligating Zn(2+). These results provide new information about the mechanism and the site(s) of zinc binding in S100A2.[1]

References

  1. Mapping the zinc ligands of S100A2 by site-directed mutagenesis. Stradal, T.B., Troxler, H., Heizmann, C.W., Gimona, M. J. Biol. Chem. (2000) [Pubmed]
 
WikiGenes - Universities