The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The cell surface glycoprotein layer of the extreme halophile Halobacterium salinarum and its relation to Haloferax volcanii: cryo-electron tomography of freeze-substituted cells and projection studies of negatively stained envelopes.

We have studied the surface layer (S-layer) of Halobacterium salinarum (formerly Halobacterium halobium), an extreme halophile requiring high concentrations of sodium, by electron microscopy of (a) isolated, negatively stained, flattened envelopes and (b) cryo-fixation of intact cells in their high-salt growth medium followed by freeze substitution and tomography of thin sections. From the negatively stained isolated envelopes we have calculated a two-dimensional, projection map that is strikingly similar to that of Haloferax volcanii, an extreme halophile requiring high concentrations of magnesium; both projection maps show the hexagonal arrangement of the morphological units with an identical center-to-center spacing of 150 A; each of the morphological units of the two species has six subunits with a similar density distribution and apparent domain organization. In contrast to the two-dimensional map, the tomographic reconstruction of Halob. salinarum does not agree in a straightforward way with the three-dimensional, electron crystallographic map of negatively stained Halof. volcanii envelopes, although the main features of the lattice and the morphological units are evident. The tomographic reconstruction of sections from epoxy-embedded material suffers from directional compression due to sectioning stress and continuous dimensional changes and mass loss due to electron irradiation. This communication consists, therefore, of three parts: (a) a comparison of the projection maps of negatively stained envelopes of Halof. volcanii and Halob. salinarum; (b) a comparison of the three-dimensional maps obtained by electron crystallography (Halof. volcanii) and low-dose cryo-tomography (Halob. salinarum); and (c) a methodological study of mass loss and dimensional changes of plastic-embedded material under low-dose conditions at room and liquid nitrogen temperatures.[1]

References

 
WikiGenes - Universities