The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Haloferax

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Haloferax

 

High impact information on Haloferax

  • Analysis of protein solvent interactions in glucose dehydrogenase from the extreme halophile Haloferax mediterranei [4].
  • Genes for tryptophan biosynthesis in the archaebacterium Haloferax volcanii [5].
  • Haloferax volcanii pre-tRNA(Trp) processing requires box C/D ribonucleoprotein (RNP)-guided 2'-O-methylation of nucleotides C34 and U39 followed by intron excision [6].
  • The archaeal ATPase of the halophile Haloferax volcanii synthesizes ATP at the expense of a proton gradient, as shown by sensitivity to the uncoupler carboxyl cyanide p-trifluoromethoxyphenylhydrazone, to the ionophore nigericin, and to the proton channel-modifying reagent N,N'-dicyclohexylcarbodiimide [7].
  • Splicing of intron-containing tRNATrp by the archaeon Haloferax volcanii occurs independent of mature tRNA structure [8].
 

Biological context of Haloferax

  • The bgaH gene was engineered into a halobacterial plasmid vector and introduced into Haloferax volcanii, a widely used strain that lacks detectable beta-galactosidase activity [9].
  • Lipid modification of proteins in Archaea: attachment of a mevalonic acid-based lipid moiety to the surface-layer glycoprotein of Haloferax volcanii follows protein translocation [10].
  • Farnesol strongly inhibited growth of a halophilic archaeon, Haloferax volcanii, with an IC50 value of only 2 microM (0.4 microgram/ml) in rich medium and 50 nM (0.01 microgram/ml) in minimal medium without lysis [11].
  • Expression of the yeast tRNAPro(UGG) gene in Haloferax volcanii resulted in the production of a single stable transcript that had not undergone intron processing or processing of 5' and 3' flanking sequences [12].
  • A curious fusion between chlorite dismutase-like and antibiotic biosynthesis monooxygenase-like domains within a single open reading frame has been revealed by both sequence homology and structural modeling in Haloferax volcanii PitA and its homologues in other halophilic archaea [13].
 

Anatomical context of Haloferax

 

Associations of Haloferax with chemical compounds

 

Gene context of Haloferax

  • To further our understanding of the archaeal SRP, 7S RNA, SRP19 and SRP54 of the halophilic archaeon Haloferax volcanii have been expressed and purified, and used to reconstitute the ternary SRP complex [20].
  • Additionally, the inverted repeat structure near orc7 homologs in the genomic sequences of two other halophiles, Haloarcula marismortui and Haloferax volcanii, is highly conserved [21].
  • The importance of the SD sequences of gvpG and gvpH was investigated in Haloferax volcanii transformants, and an alteration of the SD sequence resulted in a reduction of the amount of the GvpG or GvpH protein [22].
  • Gene cloning, heterologous overexpression and optimized refolding of the NAD-glutamate dehydrogenase from Haloferax mediterranei [23].
  • The two gvpA promoters P(cA) and P(pA) of Halobacterium salinarum, and the P(mcA) promoter of Haloferax mediterranei were investigated with respect to growth-phase-dependent expression and regulation in Haloferax volcanii transformants using the bgaH reading frame encoding BgaH, an enzyme with beta-galactosidase activity, as reporter [24].
 

Analytical, diagnostic and therapeutic context of Haloferax

References

  1. Evidence for post-translational membrane insertion of the integral membrane protein bacterioopsin expressed in the heterologous halophilic archaeon Haloferax volcanii. Ortenberg, R., Mevarech, M. J. Biol. Chem. (2000) [Pubmed]
  2. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase from Haloferax volcanii: purification, characterization, and expression in Escherichia coli. Bischoff, K.M., Rodwell, V.W. J. Bacteriol. (1996) [Pubmed]
  3. Recombinant production of Zymomonas mobilis pyruvate decarboxylase in the haloarchaeon Haloferax volcanii. Kaczowka, S.J., Reuter, C.J., Talarico, L.A., Maupin-Furlow, J.A. Archaea (2005) [Pubmed]
  4. Analysis of protein solvent interactions in glucose dehydrogenase from the extreme halophile Haloferax mediterranei. Britton, K.L., Baker, P.J., Fisher, M., Ruzheinikov, S., Gilmour, D.J., Bonete, M.J., Ferrer, J., Pire, C., Esclapez, J., Rice, D.W. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  5. Genes for tryptophan biosynthesis in the archaebacterium Haloferax volcanii. Lam, W.L., Cohen, A., Tsouluhas, D., Doolittle, W.F. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  6. Sequential 2'-O-methylation of archaeal pre-tRNATrp nucleotides is guided by the intron-encoded but trans-acting box C/D ribonucleoprotein of pre-tRNA. Singh, S.K., Gurha, P., Tran, E.J., Maxwell, E.S., Gupta, R. J. Biol. Chem. (2004) [Pubmed]
  7. Characterization and subunit structure of the ATP synthase of the halophilic archaeon Haloferax volcanii and organization of the ATP synthase genes. Steinert, K., Wagner, V., Kroth-Pancic, P.G., Bickel-Sandkötter, S. J. Biol. Chem. (1997) [Pubmed]
  8. Splicing of intron-containing tRNATrp by the archaeon Haloferax volcanii occurs independent of mature tRNA structure. Armbruster, D.W., Daniels, C.J. J. Biol. Chem. (1997) [Pubmed]
  9. Sequence and expression of a halobacterial beta-galactosidase gene. Holmes, M.L., Dyall-Smith, M.L. Mol. Microbiol. (2000) [Pubmed]
  10. Lipid modification of proteins in Archaea: attachment of a mevalonic acid-based lipid moiety to the surface-layer glycoprotein of Haloferax volcanii follows protein translocation. Konrad, Z., Eichler, J. Biochem. J. (2002) [Pubmed]
  11. Evidence for farnesol-mediated isoprenoid synthesis regulation in a halophilic archaeon, Haloferax volcanii. Tachibana, A., Tanaka, T., Taniguchi, M., Oi, S. FEBS Lett. (1996) [Pubmed]
  12. Expression of a yeast intron-containing tRNA in the archaeon Haloferax volcanii. Palmer, J.R., Nieuwlandt, D.T., Daniels, C.J. J. Bacteriol. (1994) [Pubmed]
  13. Haloferax volcanii PitA: an example of functional interaction between the Pfam chlorite dismutase and antibiotic biosynthesis monooxygenase families? Bab-Dinitz, E., Shmuely, H., Maupin-Furlow, J., Eichler, J., Shaanan, B. Bioinformatics (2006) [Pubmed]
  14. Genes for tryptophan biosynthesis in the halophilic archaebacterium Haloferax volcanii: the trpDFEG cluster. Lam, W.L., Logan, S.M., Doolittle, W.F. J. Bacteriol. (1992) [Pubmed]
  15. Nucleotide sequence of the ATPase A- and B-subunits of the halophilic archaebacterium Haloferax volcanii and characterization of the enzyme. Steinert, K., Kroth-Pancic, P.G., Bickel-Sandkötter, S. Biochim. Biophys. Acta (1995) [Pubmed]
  16. Mevinolin-resistant mutations identify a promoter and the gene for a eukaryote-like 3-hydroxy-3-methylglutaryl-coenzyme A reductase in the archaebacterium Haloferax volcanii. Lam, W.L., Doolittle, W.F. J. Biol. Chem. (1992) [Pubmed]
  17. A C-terminal truncation results in high-level expression of the functional photoreceptor sensory rhodopsin I in the archaeon Halobacterium salinarium. Ferrando-May, E., Brustmann, B., Oesterhelt, D. Mol. Microbiol. (1993) [Pubmed]
  18. A novel enzymatic pathway leading to 1-methylinosine modification in Haloferax volcanii tRNA. Grosjean, H., Constantinesco, F., Foiret, D., Benachenhou, N. Nucleic Acids Res. (1995) [Pubmed]
  19. The extremely halophilic archaeon Haloferax volcanii has two very different dihydrofolate reductases. Ortenberg, R., Rozenblatt-Rosen, O., Mevarech, M. Mol. Microbiol. (2000) [Pubmed]
  20. Reconstitution of the signal recognition particle of the halophilic archaeon Haloferax volcanii. Tozik, I., Huang, Q., Zwieb, C., Eichler, J. Nucleic Acids Res. (2002) [Pubmed]
  21. An archaeal chromosomal autonomously replicating sequence element from an extreme halophile, Halobacterium sp. strain NRC-1. Berquist, B.R., DasSarma, S. J. Bacteriol. (2003) [Pubmed]
  22. In vivo studies on putative Shine-Dalgarno sequences of the halophilic archaeon Halobacterium salinarum. Sartorius-Neef, S., Pfeifer, F. Mol. Microbiol. (2004) [Pubmed]
  23. Gene cloning, heterologous overexpression and optimized refolding of the NAD-glutamate dehydrogenase from Haloferax mediterranei. Díaz, S., Pérez-Pomares, F., Pire, C., Ferrer, J., Bonete, M.J. Extremophiles (2006) [Pubmed]
  24. In vivo analyses of constitutive and regulated promoters in halophilic archaea. Gregor, D., Pfeifer, F. Microbiology (Reading, Engl.) (2005) [Pubmed]
  25. Site-directed mutagenesis and halophilicity of dihydrolipoamide dehydrogenase from the halophilic archaeon, Haloferax volcanii. Jolley, K.A., Russell, R.J., Hough, D.W., Danson, M.J. Eur. J. Biochem. (1997) [Pubmed]
  26. NADP-dependent isocitrate dehydrogenase from the halophilic archaeon Haloferax volcanii: cloning, sequence determination and overexpression in Escherichia coli. Camacho, M., Rodríguez-Arnedo, A., Bonete, M.J. FEMS Microbiol. Lett. (2002) [Pubmed]
 
WikiGenes - Universities