The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Dihydropyridine-induced Ca2+ release from ryanodine-sensitive Ca2+ pools in human skeletal muscle cells.

Dihydropyridines (DHPs) are widely used antihypertensive drugs and inhibit excitation-contraction (E-C) coupling in vascular smooth muscle and in myocardial cells by antagonizing L-type Ca2+ channels (DHP receptors). However, contradictory reports exist about the interaction of the DHP with the skeletal muscle isoform of the DHP receptor and E-C coupling in skeletal muscle cells. Using the intracellular fluorescent Ca2+ indicator fura-2, an increase in [Ca2+]i was observed after extracellular application of nifedipine to cultured human skeletal muscle cells. The rise in [Ca2+]i was dose dependent with a calculated EC50 of 614 +/- 96 nM nifedipine and a maximum increment in [Ca2+]i of 80 +/- 3.2 nM. Similar values were obtained with nitrendipine. This effect of DHPs was restricted to differentiated skeletal muscle cells and was not seen in non-differentiated cells or in PC12 cells. In spite of the observed increase in [Ca2+]i, whole-cell patch clamp experiments revealed that 10 microM nifedipine abolished inward Ba2+ currents through L-type Ca2+ channels completely. Similar to nifedipine, (+/-)Bay K 8644, an agonist of the L-type Ca2+ channel, also increased [Ca2+]i. This effect could not be enhanced by further addition of nifedipine, suggesting that both DHPs act via a common signalling pathway. Based on the specific mechanism of the skeletal muscle E-C coupling, we propose the stabilization of a conformational state of the DHP receptor by DHPs, which is sufficient to activate the ryanodine receptor.[1]

References

  1. Dihydropyridine-induced Ca2+ release from ryanodine-sensitive Ca2+ pools in human skeletal muscle cells. Weigl, L.G., Hohenegger, M., Kress, H.G. J. Physiol. (Lond.) (2000) [Pubmed]
 
WikiGenes - Universities