Phagocytosis is regulated by nitric oxide in murine microglia.
Nitric oxide (NO) is produced by inducible nitric oxide synthase (iNOS) in activated microglia and has been shown to participate in host defense mechanisms. However, the role of NO produced by constitutive nitric oxide synthase (cNOS) in microglia is poorly understood. In this report, NO was found to regulate phagocytosis in murine BV-2 microglial cells as quantified by flow cytometry. Addition of NO-generating compounds caused impaired phagocytosis as compared to untreated microglia. The addition of nitric oxide synthase (NOS) inhibitors to microglial cells resulted in potentiation of phagocytosis, suggesting that constitutive NO was participating in the regulation of phagocytosis. The inverse correlation between NO production and phagocytosis was also observed when Alzheimer's beta-amyloid peptide was added. With beta-amyloid treatment, constitutive NO production decreased while phagocytosis increased. Cell extracts prepared from untreated microglia were found to contain both neuronal and endothelial NOS isoforms, but not the inducible form. The correlation of spontaneous NO production with attenuated phagocytosis suggests that constitutive NOS enzymes participate in microglial regulation.[1]References
- Phagocytosis is regulated by nitric oxide in murine microglia. Kopec, K.K., Carroll, R.T. Nitric Oxide (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg