The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Functional antagonism between Msx2 and CCAAT/enhancer- binding protein alpha in regulating the mouse amelogenin gene expression is mediated by protein-protein interaction.

Ameloblast-specific amelogenin gene expression is spatiotemporally regulated during tooth development. In a previous study, the CCAAT/enhancer-binding protein alpha (C/EBPalpha) was identified as a transcriptional activator of the mouse amelogenin gene in a cell type-specific manner. Here, Msx2 is shown to repress the promoter activity of amelogenin-promoter reporter constructs independent of its intrinsic DNA binding activity. In transient cotransfection assays, Msx2 and C/EBPalpha antagonize each other in regulating the expression of the mouse amelogenin gene. Electrophoresis mobility shift assays demonstrate that Msx2 interferes with the binding of C/EBPalpha to its cognate site in the mouse amelogenin minimal promoter, although Msx2 itself does not bind to the same promoter fragment. Protein-protein interaction between Msx2 and C/EBPalpha is identified with co-immunoprecipitation analyses. Functional antagonism between Msx2 and C/EBPalpha is also observed on the stably transfected 2.2-kilobase mouse amelogenin promoter in ameloblast-like LS8 cells. Furthermore, the carboxyl-terminal residues 183-267 of Msx2 are required for protein-protein interaction, whereas the amino-terminal residues 2-97 of Msx2 play a less critical role. Among three family members tested (C/EBPalpha, -beta, and -gamma), Msx2 preferentially interacts with C/EBPalpha. Taken together, these data indicate that protein-protein interaction rather than competition for overlapping binding sites results in the functional antagonism between Msx2 and C/EBPalpha in regulating the mouse amelogenin gene expression.[1]

References

 
WikiGenes - Universities