The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

D-Ala-D-X ligases: evaluation of D-alanyl phosphate intermediate by MIX, PIX and rapid quench studies.

BACKGROUND: The D-alanyl-D-lactate (D-Ala-D-Lac) ligase is required for synthesis of altered peptidoglycan (PG) termini in the VanA phenotype of vancomycin-resistant enterococci (VRE), and the D-alanyl-D-serine (D-Ala-D-Ser) ligase is required for the VanC phenotype of VRE. Here we have compared these with the Escherichia coli D-Ala-D-Ala ligase DdlB for formation of the enzyme-bound D-alanyl phosphate, D-Ala(1)-PO(3)(2-) (D-Ala(1)-P), intermediate. RESULTS: The VanC2 ligase catalyzes a molecular isotope exchange (MIX) partial reaction, incorporating radioactivity from (14)C-D-Ser into D-Ala-(14)C-D-Ser at a rate of 0.7 min(-1), which approaches kinetic competence for the reversible D-Ala(1)-P formation from the back direction. A positional isotope exchange (PIX) study with the VanC2 and VanA ligases displayed a D-Ala(1)-dependent bridge to nonbridge exchange of the oxygen-18 label of [gamma-(18)O(4)]-ATP at rates of up to 0.6 min(-1); this exchange was completely suppressed by the addition of the second substrate D-Ser or D-Lac, respectively, as the D-Ala(1)-P intermediate was swept in the forward direction. As a third criterion for formation of bound D-Ala(1)-P, we conducted rapid quench studies to detect bursts of ADP formation in the first turnover of DdlB and VanA. With E. coli DdlB, there was a burst amplitude of ADP corresponding to 26-30% of the DdlB active sites, followed by the expected steady-state rate of 620-650 min(-1). For D-Ala-D-Lac and D-Ala-D-Ala synthesis by VanA, we measured a burst of 25-30% or 51% of active enzyme, respectively. CONCLUSIONS: These three approaches support the rapid (more than 1000 min(-1)), reversible formation of the enzyme intermediate D-Ala(1)-P by members of the D-Ala-D-X (where X is Ala, Ser or Lac) ligase superfamily.[1]

References

  1. D-Ala-D-X ligases: evaluation of D-alanyl phosphate intermediate by MIX, PIX and rapid quench studies. Healy, V.L., Mullins, L.S., Li, X., Hall, S.E., Raushel, F.M., Walsh, C.T. Chem. Biol. (2000) [Pubmed]
 
WikiGenes - Universities