D-Ala-D-X ligases: evaluation of D-alanyl phosphate intermediate by MIX, PIX and rapid quench studies.
BACKGROUND: The D-alanyl-D-lactate (D-Ala-D-Lac) ligase is required for synthesis of altered peptidoglycan (PG) termini in the VanA phenotype of vancomycin-resistant enterococci (VRE), and the D-alanyl-D-serine (D-Ala-D-Ser) ligase is required for the VanC phenotype of VRE. Here we have compared these with the Escherichia coli D-Ala-D-Ala ligase DdlB for formation of the enzyme-bound D-alanyl phosphate, D-Ala(1)-PO(3)(2-) (D-Ala(1)-P), intermediate. RESULTS: The VanC2 ligase catalyzes a molecular isotope exchange (MIX) partial reaction, incorporating radioactivity from (14)C-D-Ser into D-Ala-(14)C-D-Ser at a rate of 0.7 min(-1), which approaches kinetic competence for the reversible D-Ala(1)-P formation from the back direction. A positional isotope exchange (PIX) study with the VanC2 and VanA ligases displayed a D-Ala(1)-dependent bridge to nonbridge exchange of the oxygen-18 label of [gamma-(18)O(4)]-ATP at rates of up to 0.6 min(-1); this exchange was completely suppressed by the addition of the second substrate D-Ser or D-Lac, respectively, as the D-Ala(1)-P intermediate was swept in the forward direction. As a third criterion for formation of bound D-Ala(1)-P, we conducted rapid quench studies to detect bursts of ADP formation in the first turnover of DdlB and VanA. With E. coli DdlB, there was a burst amplitude of ADP corresponding to 26-30% of the DdlB active sites, followed by the expected steady-state rate of 620-650 min(-1). For D-Ala-D-Lac and D-Ala-D-Ala synthesis by VanA, we measured a burst of 25-30% or 51% of active enzyme, respectively. CONCLUSIONS: These three approaches support the rapid (more than 1000 min(-1)), reversible formation of the enzyme intermediate D-Ala(1)-P by members of the D-Ala-D-X (where X is Ala, Ser or Lac) ligase superfamily.[1]References
- D-Ala-D-X ligases: evaluation of D-alanyl phosphate intermediate by MIX, PIX and rapid quench studies. Healy, V.L., Mullins, L.S., Li, X., Hall, S.E., Raushel, F.M., Walsh, C.T. Chem. Biol. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg