The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Insulin resistance and the modulation of rat cardiac K(+) currents.

K(+) currents were measured using a whole cell voltage-clamp method in enzymatically isolated rat ventricular myocytes obtained from two hyperinsulinemic, insulin-resistant models. Fructose-fed rats as well as genetically obese rats, both of which are resistant to the metabolic effects of insulin, were used. The normal augmentation of a calcium-independent sustained K(+) current was reduced or abolished in insulin-resistant states. This resistance can be reversed by the insulin-sensitizing drug metformin. Vanadyl sulfate (3-4 wk treatment or after 5-6 h in vitro) enhanced the sustained K(+) current. The in vitro effect of vanadyl was blocked by cycloheximide. Insulin resistance of the K(+) current was not reversed by vanadyl sulfate. The results show that insulin resistance is expressed in terms of insulin actions on ion channels, in addition to its actions on metabolism. This resistance can be reversed by the insulin-sensitizing drug metformin. Vanadate compounds, which mimic the effects of insulin on metabolism, also mimic the augmenting effects of insulin on a cardiac K(+) current in a manner suggesting synthesis of new channels.[1]

References

  1. Insulin resistance and the modulation of rat cardiac K(+) currents. Shimoni, Y., Severson, D., Ewart, H.S. Am. J. Physiol. Heart Circ. Physiol. (2000) [Pubmed]
 
WikiGenes - Universities