The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

orthovanadate     trihydroxy-oxo-vanadium

Synonyms: Vanadiumsaeure, CHEMBL50626, CHEBI:27273, H3VO4, DNC001494, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Vanadate

 

Psychiatry related information on Vanadate

  • Reduction of vanadate, a possible explanation of the effect of phenothiazines in manic-depressive psychosis [5].
  • Much less inactivation occurs during turnover at long reaction times at higher pH (> pH 6), and the inactivation can be fully reversed by subsequent addition of vanadate [6].
  • Inhibition by vanadate of the K+-dependent p-nitrophenylphosphatase activity catalyzed by the (Na+ + K+)-ATPase partially purified from pig kidney showed competitive behavior with the substrate, K+ and Mg2+ acted as cofactors in promoting that inhibition [7].
 

High impact information on Vanadate

  • However, after nucleotide hydrolysis is inhibited by vanadate, unidirectional translocation ceases, and microtubules instead undergo irregular back-and-forth motion along their longitudinal axes [8].
  • Inactivation of cytoplasmic dynein in the high-speed cytosol by vanadate-mediated UV photocleavage inhibited minus end-directed organelle motility by over 90% [9].
  • Spindle elongation and the pattern of tubulin incorporation into the midzone, but not the poles, are ATP-dependent and vanadate-sensitive [10].
  • As this protein shares several properties with the granule vanadate-sensitive ATPase II, we infer that this ATPase, of relative molecular mass 115,000, is the protein responsible for aminophospholipid translocation [11].
  • It binds to microtubules under conditions of ATP depletion, possesses an ATPase activity and is sensitive to ultraviolet-induced, vanadate-dependent cleavage [12].
 

Chemical compound and disease context of Vanadate

 

Biological context of Vanadate

 

Anatomical context of Vanadate

  • Importance of cardiac cell membranes in vanadate-induced NADH oxidation [23].
  • Negative and positive inotropic action of vanadate on atrial and ventricular myocardium [24].
  • Glycogen synthase activity was reduced in skeletal muscle of diabetic rats (P less than 0.05) compared with controls and was increased to supranormal levels by vanadate treatment (P less than 0.01) [25].
  • Although vanadate exerts beneficial insulin-like effects and potentiates the effect of insulin in sensitive tissue, it may result in undesirable activation of other target cells, such as mesangial cells [2].
  • Failure of lithium to counteract vanadate-induced inhibition of red blood cell membrane Na+, K+-ATPase [26].
 

Associations of Vanadate with other chemical compounds

 

Gene context of Vanadate

  • No lag phase was detected between the time when cyclin A was added and the time when H1 histone kinase activity was produced in frog extracts, even in the presence of 2 mM vanadate, which blocks cdc25 activity [29].
  • These results, together with the fact that vanadate-sensitive phosphatase activity was higher in confluent cells, suggest that phosphatases play a role in the down-regulation of p42/p44 MAPK activity [30].
  • Importantly, culture of MO7E cells with vanadate (up to 10 mumol/L) resulted in a dose-dependent increase in GM-CSF-or IL-3-induced proliferation of up to 1.8-fold [31].
  • One of these, an approximately 62-kDa protein, also associated with CSK in NIH 3T3 cells treated with vanadate prior to lysis and in NIH 3T3 cells expressing an activated c-Src mutant [32].
  • We examined vanadate-induced nucleotide trapping in MRP1 stably expressed in KB cell membrane by using 8-azido-[alpha-(32)P]ATP [33].
 

Analytical, diagnostic and therapeutic context of Vanadate

References

  1. Vanadate normalizes hyperglycemia in two mouse models of non-insulin-dependent diabetes mellitus. Meyerovitch, J., Rothenberg, P., Shechter, Y., Bonner-Weir, S., Kahn, C.R. J. Clin. Invest. (1991) [Pubmed]
  2. Activation of mesangial cells by the phosphatase inhibitor vanadate. Potential implications for diabetic nephropathy. Wenzel, U.O., Fouqueray, B., Biswas, P., Grandaliano, G., Choudhury, G.G., Abboud, H.E. J. Clin. Invest. (1995) [Pubmed]
  3. Glucose transporter upregulation improves ischemic tolerance in hypertrophied failing heart. Takeuchi, K., McGowan, F.X., Glynn, P., Moran, A.M., Rader, C.M., Cao-Danh, H., del Nido, P.J. Circulation (1998) [Pubmed]
  4. Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis. Denu, J.M., Lohse, D.L., Vijayalakshmi, J., Saper, M.A., Dixon, J.E. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  5. Reduction of vanadate, a possible explanation of the effect of phenothiazines in manic-depressive psychosis. Naylor, G.G., Smith, A.H. Lancet (1982) [Pubmed]
  6. Inhibition and inactivation of vanadium bromoperoxidase by the substrate hydrogen peroxide and further mechanistic studies. Soedjak, H.S., Walker, J.V., Butler, A. Biochemistry (1995) [Pubmed]
  7. The effects of several ligands on the potassium-vanadate interaction in the inhibition of the (Na+ + K+)-ATPase and the Na+, K+ pump. Beaugé, L., Berberian, G. Biochim. Biophys. Acta (1983) [Pubmed]
  8. One-dimensional diffusion of microtubules bound to flagellar dynein. Vale, R.D., Soll, D.R., Gibbons, I.R. Cell (1989) [Pubmed]
  9. Cytoplasmic dynein is a minus end-directed motor for membranous organelles. Schroer, T.A., Steuer, E.R., Sheetz, M.P. Cell (1989) [Pubmed]
  10. The role of tubulin polymerization during spindle elongation in vitro. Masuda, H., Cande, W.Z. Cell (1987) [Pubmed]
  11. Control of transmembrane lipid asymmetry in chromaffin granules by an ATP-dependent protein. Zachowski, A., Henry, J.P., Devaux, P.F. Nature (1989) [Pubmed]
  12. An ATPase with properties expected for the organelle motor of the giant amoeba, Reticulomyxa. Euteneuer, U., Koonce, M.P., Pfister, K.K., Schliwa, M. Nature (1988) [Pubmed]
  13. Combined treatment with benzylamine and low dosages of vanadate enhances glucose tolerance and reduces hyperglycemia in streptozotocin-induced diabetic rats. Marti, L., Abella, A., Carpéné, C., Palacín, M., Testar, X., Zorzano, A. Diabetes (2001) [Pubmed]
  14. Dopaminergic inhibition of DNA synthesis in pituitary tumor cells is associated with phosphotyrosine phosphatase activity. Florio, T., Pan, M.G., Newman, B., Hershberger, R.E., Civelli, O., Stork, P.J. J. Biol. Chem. (1992) [Pubmed]
  15. Vanadate inhibits expression of the gene for phosphoenolpyruvate carboxykinase (GTP) in rat hepatoma cells. Bosch, F., Hatzoglou, M., Park, E.A., Hanson, R.W. J. Biol. Chem. (1990) [Pubmed]
  16. Demonstration of a metabolically active glucose-6-phosphate pool in the lumen of liver microsomal vesicles. Bánhegyi, G., Marcolongo, P., Fulceri, R., Hinds, C., Burchell, A., Benedetti, A. J. Biol. Chem. (1997) [Pubmed]
  17. Molecular cloning and functional characterization of a novel mitogen-activated protein kinase phosphatase, MKP-4. Muda, M., Boschert, U., Smith, A., Antonsson, B., Gillieron, C., Chabert, C., Camps, M., Martinou, I., Ashworth, A., Arkinstall, S. J. Biol. Chem. (1997) [Pubmed]
  18. The essential light chains constitute part of the active site of smooth muscle myosin. Okamoto, Y., Sekine, T., Grammer, J., Yount, R.G. Nature (1986) [Pubmed]
  19. Positive inotropism of vanadate in cat papillary muscle. Hackbarth, I., Schmitz, W., Scholz, H., Erdmann, E., Krawietz, W., Philipp, G. Nature (1978) [Pubmed]
  20. Vanadate-stimulated natriuresis. Balfour, W.E., Grantham, J.J., Glynn, I.M. Nature (1978) [Pubmed]
  21. Effects of ATP and vanadate on calcium efflux from barnacle muscle fibres. Nelson, M.T., Blaustein, M.P. Nature (1981) [Pubmed]
  22. Excitation of Limulus photoreceptors by vanadate and by a hydrolysis-resistant analog of guanosine triphosphate. Fein, A., Corson, D.W. Science (1981) [Pubmed]
  23. Importance of cardiac cell membranes in vanadate-induced NADH oxidation. Erdmann, E., Krawietz, W., Hackbarth, I., Schmitz, W., Scholz, H. Nature (1981) [Pubmed]
  24. Negative and positive inotropic action of vanadate on atrial and ventricular myocardium. Borchard, U., Fox, A.A., Greeff, K., Schlieper, P. Nature (1979) [Pubmed]
  25. Correction of chronic hyperglycemia with vanadate, but not with phlorizin, normalizes in vivo glycogen repletion and in vitro glycogen synthase activity in diabetic skeletal muscle. Rossetti, L., Lauglin, M.R. J. Clin. Invest. (1989) [Pubmed]
  26. Failure of lithium to counteract vanadate-induced inhibition of red blood cell membrane Na+, K+-ATPase. MacDonald, E., LeRoy, A., Linnoila, M. Lancet (1982) [Pubmed]
  27. Extracellular matrix modulates epidermal growth factor receptor activation in rat glomerular epithelial cells. Cybulsky, A.V., McTavish, A.J., Cyr, M.D. J. Clin. Invest. (1994) [Pubmed]
  28. Rat pancreatic zymogen granules. An actively acidified compartment. Niederau, C., Van Dyke, R.W., Scharschmidt, B.F., Grendell, J.H. Gastroenterology (1986) [Pubmed]
  29. Cyclin A potentiates maturation-promoting factor activation in the early Xenopus embryo via inhibition of the tyrosine kinase that phosphorylates cdc2. Devault, A., Fesquet, D., Cavadore, J.C., Garrigues, A.M., Labbé, J.C., Lorca, T., Picard, A., Philippe, M., Dorée, M. J. Cell Biol. (1992) [Pubmed]
  30. Confluence of vascular endothelial cells induces cell cycle exit by inhibiting p42/p44 mitogen-activated protein kinase activity. Viñals, F., Pouysségur, J. Mol. Cell. Biol. (1999) [Pubmed]
  31. Signal transduction of the human granulocyte-macrophage colony-stimulating factor and interleukin-3 receptors involves tyrosine phosphorylation of a common set of cytoplasmic proteins. Kanakura, Y., Druker, B., Cannistra, S.A., Furukawa, Y., Torimoto, Y., Griffin, J.D. Blood (1990) [Pubmed]
  32. The nonreceptor protein-tyrosine kinase CSK complexes directly with the GTPase-activating protein-associated p62 protein in cells expressing v-Src or activated c-Src. Neet, K., Hunter, T. Mol. Cell. Biol. (1995) [Pubmed]
  33. Nonequivalent nucleotide trapping in the two nucleotide binding folds of the human multidrug resistance protein MRP1. Nagata, K., Nishitani, M., Matsuo, M., Kioka, N., Amachi, T., Ueda, K. J. Biol. Chem. (2000) [Pubmed]
  34. Tumor promoter phorbol 12-myristate 13-acetate inhibits mitogen-stimulated Na+/H+ exchange in human epidermoid carcinoma A431 cells. Whiteley, B., Cassel, D., Zhuang, Y.X., Glaser, L. J. Cell Biol. (1984) [Pubmed]
  35. ATP-dependent structural changes of the outer dynein arm in Tetrahymena cilia: a freeze-etch replica study. Tsukita, S., Tsukita, S., Usukura, J., Ishikawa, H. J. Cell Biol. (1983) [Pubmed]
  36. The structure of the membrane systems in a novel muscle cell modified for heat production. Block, B.A., Franzini-Armstrong, C. J. Cell Biol. (1988) [Pubmed]
  37. Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Schaller, A., Oecking, C. Plant Cell (1999) [Pubmed]
  38. Active site of RNase: neutron diffraction study of a complex with uridine vanadate, a transition-state analog. Wlodawer, A., Miller, M., Sjölin, L. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
 
WikiGenes - Universities