Cysteine residues and the structure of the rat renal proximal tubular type II sodium phosphate cotransporter (rat NaPi IIa).
The rat renal Na/P(i) cotransporter type IIa (rat NaP(i) IIa) is a 637 amino acid protein containing 12 cysteine residues. We examined the effect of different cysteine modifying methanethiosulfonate (MTS)-reagents and the disulfide bond reducing agent tris(2-carboxyethyl)phosphine (TCEP) on the transport activity of wild-type and 12 single cysteine substitution mutants of rat NaPi IIa expressed in Xenopus laevis oocytes. The transport activity of the wild-type protein was resistant to three membrane impermeant MTS-reagents (MTSEA, MTSET and MTSES). In contrast, membrane permeant methyl methanethiosulfonate (MMTS) and TCEP inhibited the transport activity of both the wild-type, as well as all the single mutant proteins. This indicated the existence of more than one functionally important cysteine residue, not accessible extracellularly, and at least 2 disulfide bridges. To identify the disulfide bridges, three double mutants lacking 2 of the 3 cysteine residues predicted to be extracellular in different combinations were examined. This led to the identification of one disulfide bridge between C306 and C334; reconsideration of the topological model predictions suggested a second disulfide bridge between C225 and C520. Evaluation of a fourth double mutant indicated that at least one of two disulfide bridges (C306 and C334; C225 and C520) has to be formed to allow the surface expression of a functional cotransporter. A revised secondary structure is proposed which includes two partially repeated motifs that are connected by disulfide bridges formed between cysteine pairs C306-C334 and C225-C520.[1]References
- Cysteine residues and the structure of the rat renal proximal tubular type II sodium phosphate cotransporter (rat NaPi IIa). Lambert, G., Forster, I.C., Biber, J., Murer, H. J. Membr. Biol. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg