The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The eukaryotic mRNA decapping protein Dcp1 interacts physically and functionally with the eIF4F translation initiation complex.

Dcp1 plays a key role in the mRNA decay process in Saccharomyces cerevisiae, cleaving off the 5' cap to leave an end susceptible to exonucleolytic degradation. The eukaryotic initiation factor complex eIF4F, which in yeast contains the core components eIF4E and eIF4G, uses the cap as a binding site, serving as an initial point of assembly for the translation apparatus, and also binds the poly(A) binding protein Pab1. We show that Dcp1 binds to eIF4G and Pab1 as free proteins, as well as to the complex eIF4E-eIF4G-Pab1. Dcp1 interacts with the N-terminal region of eIF4G but does not compete significantly with eIF4E or Pab1 for binding to eIF4G. Most importantly, eIF4G acts as a function-enhancing recruitment factor for Dcp1. However, eIF4E blocks this effect as a component of the high affinity cap-binding complex eIF4E-eIF4G. Indeed, cooperative enhancement of the eIF4E-cap interaction stabilizes yeast mRNAs in vivo. These data on interactions at the interface between translation and mRNA decay suggest how events at the 5' cap and 3' poly(A) tail might be coupled.[1]


WikiGenes - Universities