The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Polyisoprenyl phosphate signaling: topography in human neutrophils.

To determine the relationship of polyisoprenyl phosphate (PIPP) remodeling and signaling to the activation state of human neutrophils (PMN), we examined the impact of leukotriene B(4) (LTB(4)) on the conversion of a unique bioactive isoprenoid (presqualene diphosphate: PSDP), recently identified as a novel endogenous signaling molecule. LTB(4) initiated rapid decrements in total PSDP that were concurrent with the respiratory burst (e.g., O(-2) formation). PSDP was identified in nuclear (39%)-, granule (36%)-, and plasma membrane (16%)-containing fractions of PMN. LTB(4) receptor ( BLT) activation led to a decrease in nuclear PSDP and concomitant increase in granule-associated PSDP. In addition, PMN nuclei displayed PSDP associated with chromatin as established by mass spectrometry. Together, these results indicate that PSDP is present in membranes and receptor activation rapidly initiates subcellular PIPP remodeling (i.e., conversion) and distribution predominantly to granule membranes. Moreover, identification of nuclear PSDP provides the basis for novel roles for PIPP and PSDP in nuclear-associated signaling events.[1]

References

  1. Polyisoprenyl phosphate signaling: topography in human neutrophils. Levy, B.D., Serhan, C.N. Biochem. Biophys. Res. Commun. (2000) [Pubmed]
 
WikiGenes - Universities