The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Femtosecond dynamics of the forbidden carotenoid S1 state in light-harvesting complexes of purple bacteria observed after two-photon excitation.

Time-resolved excited-state absorption intensities after direct two-photon excitation of the carotenoid S(1) state are reported for light-harvesting complexes of purple bacteria. Direct excitation of the carotenoid S(1) state enables the measurement of subsequent dynamics on a fs time scale without interference from higher excited states, such as the optically allowed S(2) state or the recently discovered dark state situated between S(1) and S(2). The lifetimes of the carotenoid S(1) states in the B800-B850 complex and B800-B820 complex of Rhodopseudomonas acidophila are 7+/-0.5 ps and 6+/-0.5 ps, respectively, and in the light-harvesting complex 2 of Rhodobacter sphaeroides approximately 1.9+/-0.5 ps. These results explain the differences in the carotenoid to bacteriochlorophyll energy transfer efficiency after S(2) excitation. In Rps. acidophila the carotenoid S(1) to bacteriochlorophyll energy transfer is found to be quite inefficient (phi(ET1) <28%) whereas in Rb. sphaeroides this energy transfer is very efficient (phi(ET1) approximately 80%). The results are rationalized by calculations of the ensemble averaged time constants. We find that the Car S(1) --> B800 electronic energy transfer (EET) pathway ( approximately 85%) dominates over Car S(1) --> B850 EET ( approximately 15%) in Rb. sphaeroides, whereas in Rps. acidophila the Car S(1) --> B850 EET ( approximately 60%) is more efficient than the Car S(1) --> B800 EET ( approximately 40%). The individual electronic couplings for the Car S(1) --> BChl energy transfer are estimated to be approximately 5-26 cm(-1). A major contribution to the difference between the energy transfer efficiencies can be explained by different Car S(1) energy gaps in the two species.[1]

References

  1. Femtosecond dynamics of the forbidden carotenoid S1 state in light-harvesting complexes of purple bacteria observed after two-photon excitation. Walla, P.J., Linden, P.A., Hsu, C.P., Scholes, G.D., Fleming, G.R. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
 
WikiGenes - Universities