The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Rhodopseudomonas

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Rhodopseudomonas

 

High impact information on Rhodopseudomonas

  • Here we report feedback-optimized coherent control over the energy-flow pathways in the light-harvesting antenna complex LH2 from Rhodopseudomonas acidophila, a photosynthetic purple bacterium [6].
  • The simulations, based on the crystallographic structure of the reaction center from Rhodopseudomonas viridis, focus on electron transfer from a bacteriopheophytin to a quinone and the subsequent back-reaction [7].
  • However, the triazine-resistant mutant T4 from Rhodopseudomonas (Rps.) viridis, which has the tyrosine residue at position 222 on the L subunit substituted for phenylalanine (TyrL222Phe), is sensitive to both ureas and phenolics [8].
  • Crystals of protein from Blastochloris viridis (formerly Rhodopseudomonas viridis) were reconstituted with ubiquinone and analyzed by monochromatic and Laue diffraction, in the dark and 3 ms after illuminating the crystal with a pulsed laser (630 nm, 3 mJ/pulse, 7 ns duration) [9].
  • Reduced (Fe(II)) Rhodopseudomonas palustris cytochrome c' (Cyt c') is more stable toward unfolding ([GuHCl](1/2) = 2.9(1) M) than the oxidized (Fe(III)) protein ([GuHCl](1/2) = 1.9(1) M) [10].
 

Chemical compound and disease context of Rhodopseudomonas

 

Biological context of Rhodopseudomonas

 

Anatomical context of Rhodopseudomonas

 

Gene context of Rhodopseudomonas

 

Analytical, diagnostic and therapeutic context of Rhodopseudomonas

References

  1. Femtosecond dynamics of the forbidden carotenoid S1 state in light-harvesting complexes of purple bacteria observed after two-photon excitation. Walla, P.J., Linden, P.A., Hsu, C.P., Scholes, G.D., Fleming, G.R. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  2. Chemical reduction of 3-oxo and unsaturated groups in fatty acids of diphosphoryl lipid A from the lipopolysaccharide of Rhodopseudomonas sphaeroides. Comparison of biological properties before and after reduction. Qureshi, N., Takayama, K., Meyer, K.C., Kirkland, T.N., Bush, C.A., Chen, L., Wang, R., Cotter, R.J. J. Biol. Chem. (1991) [Pubmed]
  3. Circular dichroism of carotenoids in bacterial light-harvesting complexes: experiments and modeling. Georgakopoulou, S., van Grondelle, R., van der Zwan, G. Biophys. J. (2004) [Pubmed]
  4. Effect of oxygen on acetylene reduction by photosynthetic bacteria. Hochman, A., Burris, R.H. J. Bacteriol. (1981) [Pubmed]
  5. Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata. McEwan, A.G., Greenfield, A.J., Wetzstein, H.G., Jackson, J.B., Ferguson, S.J. J. Bacteriol. (1985) [Pubmed]
  6. Quantum control of energy flow in light harvesting. Herek, J.L., Wohlleben, W., Cogdell, R.J., Zeidler, D., Motzkus, M. Nature (2002) [Pubmed]
  7. Dispersed polaron simulations of electron transfer in photosynthetic reaction centers. Warshel, A., Chu, Z.T., Parson, W.W. Science (1989) [Pubmed]
  8. Herbicide binding in the bacterial photosynthetic reaction center. Sinning, I. Trends Biochem. Sci. (1992) [Pubmed]
  9. Time-resolved crystallographic studies of light-induced structural changes in the photosynthetic reaction center. Baxter, R.H., Ponomarenko, N., Srajer, V., Pahl, R., Moffat, K., Norris, J.R. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  10. Cytochrome c' folding triggered by electron transfer: fast and slow formation of four-helix bundles. Lee, J.C., Gray, H.B., Winkler, J.R. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  11. A cluster of bacterial genes for anaerobic benzene ring biodegradation. Egland, P.G., Pelletier, D.A., Dispensa, M., Gibson, J., Harwood, C.S. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  12. Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Uffen, R.L. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  13. Isolation and characterization of the pigment-protein complexes of Rhodopseudomonas sphaeroides by lithium dodecyl sulfate/polyacrylamide gel electrophoresis. Broglie, R.M., Hunter, C.N., Delepelaire, P., Niederman, R.A., Chua, N.H., Clayton, R.K. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  14. Photoaffinity labeling of an antimycin-binding site in Rhodopseudomonas sphaeroides. Wilson, E., Farley, T.M., Takemoto, J.Y. J. Biol. Chem. (1985) [Pubmed]
  15. Primary acceptor in bacterial photosynthesis: obligatory role of ubiquinone in photoactive reaction centers of Rhodopseudomonas spheroides. Okamura, M.Y., Isaacson, R.A., Feher, G. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  16. The gene crtI mediates the conversion of phytoene into colored carotenoids in Rhodopseudomonas capsulata. Giuliano, G., Pollock, D., Scolnik, P.A. J. Biol. Chem. (1986) [Pubmed]
  17. Electron transfer from the tetraheme cytochrome to the special pair in isolated reaction centers of Rhodopseudomonas viridis. Ortega, J.M., Mathis, P. Biochemistry (1993) [Pubmed]
  18. Comparison of permeant ion uptake and carotenoid band shift as methods for determining the membrane potential in chromatophores from Rhodopseudomonas sphaeroides Ga. Ferguson, S.J., Jones, O.T., Kell, D.B., Sorgato, M.C. Biochem. J. (1979) [Pubmed]
  19. Is there a conserved interaction between cardiolipin and the type II bacterial reaction center? Wakeham, M.C., Sessions, R.B., Jones, M.R., Fyfe, P.K. Biophys. J. (2001) [Pubmed]
  20. Inhibition of electron transfer by 3-alkyl-2-hydroxy-1,4-naphthoquinones in the ubiquinol-cytochrome c oxidoreductases of Rhodopseudomonas sphaeroides and mammalian mitochondria. Interaction with a ubiquinone-binding site and the Rieske iron-sulfur cluster. Matsuura, K., Bowyer, J.R., Ohnishi, T., Dutton, P.L. J. Biol. Chem. (1983) [Pubmed]
  21. Thermodynamic properties of the semiquinone and its binding site in the ubiquinol-cytochrome c (c2) oxidoreductase of respiratory and photosynthetic systems. Robertson, D.E., Prince, R.C., Bowyer, J.R., Matsuura, K., Dutton, P.L., Ohnishi, T. J. Biol. Chem. (1984) [Pubmed]
  22. Disordered exciton model for the core light-harvesting antenna of Rhodopseudomonas viridis. Novoderezhkin, V., Monshouwer, R., van Grondelle, R. Biophys. J. (1999) [Pubmed]
  23. Inactivation of suppressor T cell activity by the nontoxic lipopolysaccharide of Rhodopseudomonas sphaeroides. Baker, P.J., Taylor, C.E., Stashak, P.W., Fauntleroy, M.B., Hasløv, K., Qureshi, N., Takayama, K. Infect. Immun. (1990) [Pubmed]
  24. Immunogenicity of Streptococcus pneumoniae type 14 capsular polysaccharide: influence of carriers and adjuvants on isotype distribution. van de Wijgert, J.H., Verheul, A.F., Snippe, H., Check, I.J., Hunter, R.L. Infect. Immun. (1991) [Pubmed]
  25. Cloning of dnaK and dnaJ homologous genes from a purple non-sulfur bacterium Rhodopseudomonas species. Momma, K., Inui, M., Yamagata, H., Yukawa, H. Biochim. Biophys. Acta (1997) [Pubmed]
  26. Nucleotide sequence of the Rhodospirillum rubrum atp operon. Falk, G., Hampe, A., Walker, J.E. Biochem. J. (1985) [Pubmed]
  27. Pigment-protein architecture in the light-harvesting antenna complexes of purple bacteria: does the crystal structure reflect the native pigment-protein arrangement? Leupold, D., Voigt, B., Beenken, W., Stiel, H. FEBS Lett. (2000) [Pubmed]
  28. Proton nuclear magnetic resonance studies of the ligation states of the monomeric ferricytochrome c' from Rhodopseudomonas palustris. Modulation of axial histidine bonding via variable proton donation. Jackson, J.T., La Mar, G.N., Bartsch, R.G. J. Biol. Chem. (1983) [Pubmed]
  29. Sodium alkyl ether sulfate preparative electrophoresis for the preparation of reaction centers without H-subunit from Rhodopseudomonas viridis. Miyake, J., Hara, M., Asada, Y., Morimoto, Y., Shirai, M. Electrophoresis (1998) [Pubmed]
  30. Comparative studies of two membrane fractions isolated from chemotrophically and phototrophically grown cells of Rhodopseudomonas capsulata. Garcia, A.F., Drews, G., Reidl, H.H. J. Bacteriol. (1981) [Pubmed]
  31. Crystallization and subunit composition of citrate lyase of Rhodopseudomonas gelatinosa. Giffhorn, F., Gottschalk, G. FEBS Lett. (1978) [Pubmed]
  32. Pyridine nucleotide control and subunit structure of phosphoribulokinase from photosynthetic bacteria. Tabita, F.R. J. Bacteriol. (1980) [Pubmed]
 
WikiGenes - Universities