The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Differential expression of sialic acid on porcine organs during the maturation process.

Sialylated structures play important roles in cell communication, and change in a regulated manner during development and differentiation. In this work, we report the main glycosidic modifications that occur during the maturation of porcine tissues, involving the sialylation process as determined with lectins. Sialic acids were identified at several levels in a broad range of cell types of nervous, respiratory, genitourinary and lymphoid origin. Nevertheless, the most contrasting was the type of glycosidic linkage between 5-N-acetyl-neuraminic acid (Neu5Ac) and galactose (Gal) expressed in central nervous system (CNS). Newborn CNS abundantly expressed Neu5Acalpha2,3Gal, but weakly or scarcely expressed Neu5Acalpha2,6Gal/GalNAc. Maturation of CNS induced drastic changes in sialic acid expression. These changes include decrease or complete loss of NeuAcalpha2,3Gal residues, mainly in olfactory structures and brain cortex, which were replaced by their isomers Neu5Acalpha2,6Gal/GalNAc. In the brain cortex and cerebellum, the increase of Neu5Acalpha2,6Gal/GalNAc molecules was paralleled by an increase of 5-N-acetyl-9-O-acetyl-neuraminic acid (Neu5,9Ac2). In addition, terminal Gal and N-acetyl-D-galactosamine (GalNAc) residues also increased their expression in adult CNS tissues, but this was more significant in structures forming the encephalic trunk. Our results show that sialylation of porcine CNS is finely modulated throughout the maturation process.[1]

References

  1. Differential expression of sialic acid on porcine organs during the maturation process. Vallejo, V., Reyes-Leyva, J., Hernández, J., Ramírez, H., Delannoy, P., Zenteno, E. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. (2000) [Pubmed]
 
WikiGenes - Universities