Phosphorylation of nucleosides and nucleoside analogs by mammalian nucleoside monophosphate kinases.
Nucleoside monophosphate kinases catalyze the reversible phosphotransferase reaction between nucleoside triphosphates and monophosphates, i.e., monophosphates are converted to their corresponding diphosphate form. These enzymes play an important role in the synthesis of nucleotides that are required for a variety of cellular metabolic processes, as well as for RNA and DNA synthesis. Human tissues contain a thymidylate kinase, a uridylate-cytidylate kinase, five isozymes of adenylate kinase, and several guanylate kinases. Nucleoside monophosphate kinases are also required for the pharmacological activation of therapeutic nucleoside and nucleotide analogs. This overview is focused on the substrate specificity, tissue distribution, and subcellular location of the mammalian monophosphate kinases and their role in the activation of nucleoside and nucleotide analogs.[1]References
- Phosphorylation of nucleosides and nucleoside analogs by mammalian nucleoside monophosphate kinases. Van Rompay, A.R., Johansson, M., Karlsson, A. Pharmacol. Ther. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg