The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae.

Previously we reported that expression of GSH1 (gamma-glutamylcysteine synthetase) and GSH2 (glutathione synthetase) of the yeast Saccharomyces cerevisiae was increased by heat-shock stress in a Yap1p-dependent fashion and consequently intracellular glutathione content was increased [Sugiyama, Izawa and Inoue (2000) J. Biol. Chem. 275, 15535-15540]. In the present study, we discuss the physiological role of glutathione in the heat-shock stress response in this yeast. Both gsh1 and gsh2 mutants could acquire thermotolerance by mild heat-shock stress and induction of Hsp104p in both mutants was normal; however, mutant cells died faster by heat shock than their parental wild-type strain. After pretreatment at a sublethal temperature, the number of respiration-deficient mutants increased in a gsh1 mutant strain in the early stages of exposure to a lethal temperature, although this increase was partially suppressed by the addition of glutathione. These results lead us to suspect that an increase of glutathione synthesis during heat-shock stress is to protect mitochondrial DNA from oxidative damage. To investigate the correlation between mitochondrial DNA damage and glutathione, mitochondrial Mn-superoxide dismutase (the SOD2 gene product) was disrupted. As a result, the rate of generation of respiration-deficient mutants of a sod2 delta strain was higher than that of the isogenic wild-type strain and treatment of the sod2 delta mutant with buthionine sulphoximine, an inhibitor of glutathione synthesis, inhibited cell growth. These results suggest that glutathione synthesis is induced by heat shock to protect the mitochondrial DNA from oxidative damage that may lead to cell death.[1]


  1. Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae. Sugiyama, K., Kawamura, A., Izawa, S., Inoue, Y. Biochem. J. (2000) [Pubmed]
WikiGenes - Universities