The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Ceramide-enhanced urokinase-type plasminogen activator ( uPA) release is mediated by protein kinase C in cultured microglia.

As described previously, a relatively high dose of neurotrophins increased the release of urokinase-type plasminogen activator ( uPA) from cultured microglia. This biological response is suggested to be caused by ceramide, which is a metabolite of nerve growth factor low-affinity receptor (NGFRp75)-associated sphingomyelin turnover. Therefore, in the present study, we examined the effect of ceramide on the release of uPA from cultured microglia. Treatment of the cells with permeable C8-ceramide (D-erythro-Sphingosine, N-octanoyl-) enhanced uPA release in a dose-dependent manner. This effect of C8-ceramide was mimicked by treatment with bacterial sphingomyelinase. A pharmacological study using a specific PKC activator, phorbol-12-myristate-13-acetate, and a protein kinase C ( PKC) inhibitor, bisindolylmaleimide, showed that PKC activation is required in order to release uPA from ceramide-stimulated microglia as well as from nonstimulated microglia. Further study using a specific conventional PKC (cPKC) activator, 1-oleoyl-2-acetyl-sn-glycerol (OAG), and a specific cPKC inhibitor, Gö 6976, suggested that PKC-delta and/or -epsilon is involved in uPA release. As opposed to the apoptotic pathway, however, no activation of c-Jun N-terminal kinase and nuclear factor kappa B was observed in C8-ceramide-stimulated microglia. The findings suggest that uPA release from microglia is regulated by a mechanism in which PKC-delta and/or -epsilon are activated and further signals are transduced subsequently.[1]

References

 
WikiGenes - Universities