Rescue of photoreceptor degeneration in rhodopsin-null Drosophila mutants by activated Rac1.
Rhodopsin is essential for photoreceptor morphogenesis; photoreceptors lacking rhodopsin degenerate in humans, mice, and Drosophila. Here we report that transgenic expression of a dominant-active Drosophila Rho guanosine triphosphatase, Drac1, rescued photoreceptor morphogenesis in rhodopsin-null mutants; expression of dominant-negative Drac1 resulted in a phenotype similar to that seen in rhodopsin-null mutants. Drac1 was localized in a specialization of the photoreceptor cortical actin cytoskeleton, which was lost in rhodopsin-null mutants. Thus, rhodopsin appears to organize the actin cytoskeleton through Drac1, contributing a structural support essential for photoreceptor morphogenesis.[1]References
- Rescue of photoreceptor degeneration in rhodopsin-null Drosophila mutants by activated Rac1. Chang, H.Y., Ready, D.F. Science (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg