The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Role of M protein aggregation in defective assembly of temperature-sensitive M protein mutants of vesicular stomatitis virus.

The goal of these experiments was to determine the steps in virus assembly that are defective at the nonpermissive temperature in temperature-sensitive (ts) matrix ( M) protein mutants of vesicular stomatitis virus. It has been proposed that mutations in M protein either reduce the binding affinity for nucleocapsids or lead to aggregation, reducing the amount of M protein available for virus assembly. Cytosolic or membrane-derived M proteins from wild-type VSV and two ts M protein mutant viruses, tsM301 and tsO23, as well as a revertant of tsO23 virus, O23R1, were analyzed for binding to nucleocapsid-M protein (NCM) complexes and for M protein aggregation. The experiments presented here showed that ts M proteins synthesized at the nonpermissive temperature were capable of binding to nucleocapsids and that aggregation of ts M proteins did not reduce the amount of soluble M protein below the amount required for assembly of the O23R1 virus. Instead, the most pronounced defect in ts M proteins was in the ability of membrane-derived M proteins to be solubilized in the presence of the detergent Triton X-100. It is proposed that this detergent-insoluble form of M protein interferes with a step necessary to initiate assembly of NCM complexes. A similar detergent, Triton X-114, caused aggregation of membrane-derived wild-type M protein, disproving an earlier proposal that membrane-derived M protein behaves like an integral membrane protein in the presence of Triton X-114. Aggregation of wild-type M protein in the presence of Triton X-100 could be induced by incubation at 37 degrees C with a high-molecular-weight fraction isolated from uninfected cells by sucrose gradient centrifugation. These results implicate host components in inducing M protein aggregation.[1]

References

 
WikiGenes - Universities